

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 1

1 Big Data Analytics (18CS72)

Module -2

Introduction to Hadoop

2.1 Big Data Programming Model

A programming model is centralized computing of data in which the data is transferred from

multiple distributed data sources to a central server. Analyzing, reporting, visualizing, business-

intelligence tasks compute centrally. Data are inputs to the central server.

Another programming model is distributed computing that uses the databases at multiple

computing nodes with data sharing between the nodes during computation. Distributed

computing in this model requires the cooperation (sharing) between the DBs in a transparent

manner. Transparent means that each user within the system may access all the data within all

databases as if they were a single database. A second requirement is location independence.

Analysis results should be independent of geographical locations. The access of one computing

node to other nodes may fail due to a single link failure.

Distributed pieces of codes as well as the data at the computing nodes Transparency between

data nodes at computing nodes do not fulfil for Big Data when distributed computing takes place

using data sharing between local and remote. Following are the reasons for this:

 Distributed data storage systems do not use the concept of joins.

 Data need to be fault-tolerant and data stores should take into account the possibilities of

network failure. When data need to be partitioned into data blocks and written at one set of

nodes, then those blocks need replication at multiple nodes. This takes care of possibilities of

network faults. When a network fault occurs, then replicated node makes the data available.

Big Data follows a theorem known as the CAP theorem. The CAP states that out of three

properties (consistency, availability and partitions), two must at least be present for applications,

services and processes.

i. Big Data Store Model

A model for Big Data store is as follows:

Data store in file system consisting of data blocks (physical division of data). The data blocks

are distributed across multiple nodes. Data nodes are at the racks of a cluster. Racks are scalable.

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 2

2 Big Data Analytics (18CS72)

A Rack has multiple data nodes (data servers), and each cluster is arranged in a number of racks.

Data Store model of files in data nodes in racks in the clusters Hadoop system uses the data store

model in which storage is at clusters, racks, data nodes and data blocks. Data blocks replicate at

the DataNodes such that a failure of link leads to access of the data block from the other nodes

replicated at the same or other racks.

ii. Big Data Programming Model

Big Data programming model is that application in which application jobs and tasks (or sub-

tasks) is scheduled on the same servers which store the data for processing.

2.2 Hadoop and its echo system

Hadoop is a computing environment in which input data stores, processes and stores the results.

The environment consists of clusters which distribute at the cloud or set of servers. Each cluster

consists of a string of data files constituting data blocks. The toy named Hadoop consisted of a

stuffed elephant. The Hadoop system cluster stuffs files in data blocks. The complete system

consists of a scalable distributed set of clusters.

Infrastructure consists of cloud for clusters. A cluster consists of sets of computers or PCs. The

Hadoop platform provides a low cost Big Data platform, which is open source and uses cloud

services. Tera Bytes of data processing takes just few minutes. Hadoop enables distributed

processing of large datasets (above 10 million bytes) across clusters of computers using a

programming model called MapReduce. The system characteristics are scalable, self-

manageable, self-healing and distributed file system.

Scalable means can be scaled up (enhanced) by adding storage and processing units as per the

requirements. Self-manageable means creation of storage and processing resources which are

used, scheduled and reduced or increased with the help of the system itself. Self-healing means

that in case of faults, they are taken care of by the system itself. Self-healing enables functioning

and resources availability. Software detect and handle failures at the task level. Software enable

the service or task execution even in case of communication or node failure.

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 3

3 Big Data Analytics (18CS72)

 Hadoop Core Components

Figure 2.1 Core components of Hadoop

The Hadoop core components of the framework are:

Hadoop Common - The common module contains the libraries and utilities that are required

by the other modules of Hadoop. For example, Hadoop common provides various components

and interfaces for distributed file system and general input/output. This includes serialization,

Java RPC (Remote Procedure Call) and file-based data structures.

Hadoop Distributed File System (HDFS) - A Java-based distributed file system which can

store all kinds of data on the disks at the clusters.

MapReduce vl - Software programming model in Hadoop 1 using Mapper and Reducer. The

vl processes large sets of data in parallel and in batches.

YARN - Software for managing resources for computing. The user application tasks or sub-

tasks run in parallel at the Hadoop, uses scheduling and handles the requests for the resources

in distributed running of the tasks.

MapReduce v2 - Hadoop 2 YARN-based system for parallel processing of large datasets and

distributed processing of the application tasks.

2.2.2 Features of Hadoop

Hadoop features are as follows:

1. Fault-efficient scalable, flexible and modular design which uses simple and modular

programming model. The system provides servers at high scalability. The system is scalable by

adding new nodes to handle larger data. Hadoop proves very helpful in storing, managing,

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 4

4 Big Data Analytics (18CS72)

processing and analyzing Big Data.

2. Robust design of HDFS: Execution of Big Data applications continue even when an

individual server or cluster fails. This is because of Hadoop provisions for backup (due to

replications at least three times for each data block) and a data recovery mechanism. HDFS thus

has high reliability.

3. Store and process Big Data: Processes Big Data of 3V characteristics.

4. Distributed clusters computing model with data locality: Processes Big Data at high speed

as the application tasks and sub-tasks submit to the DataNodes. One can achieve more

computing power by increasing the number of computing nodes. The processing splits across

multiple DataNodes (servers), and thus fast processing and aggregated results.

5. Hardware fault-tolerant: A fault does not affect data and application processing. If a node

goes down, the other nodes take care of the residue. This is due to multiple copies of all data

blocks which replicate automatically. Default is three copies of data blocks.

6. Open-source framework: Open source access and cloud services enable large data store.

Hadoop uses a cluster of multiple inexpensive servers or the cloud.

7. Java and Linux based: Hadoop uses Java interfaces. Hadoop base is Linux but has its own

set of shell commands support.

2.2.3. Hadoop Eco system Components

The four layers in Figure 2.2 are as follows:

(i) Distributed storage layer

(ii) Resource-manager layer for job or application sub-tasks scheduling and execution

(iii) Processing-framework layer, consisting of Mapper and Reducer for the MapReduce

process-flow.

(iv) APis at application support layer (applications such as Hive and Pig). The codes

communicate and run using MapReduce or YARN at processing framework layer. Reducer

output communicate to APis (Figure 2.2).

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 5

5 Big Data Analytics (18CS72)

Figure 2.2 Hadoop main components and ecosystem components

AVRO enables data serialization between the layers. Zookeeper enables coordination among

layer components.

The holistic view of Hadoop architecture provides an idea of implementation of Hadoop

components of the ecosystem. Client hosts run applications using Hadoop ecosystem projects,

such as Pig, Hive and Mahout.

2.3 HADOOP DISTRIBUTED FILE SYSTEM

HDFS is a core component of Hadoop. HDFS is designed to run on a cluster of computers and

servers at cloud-based utility services.

HDFS stores Big Data which may range from GBs (1 GB= 230 B) to PBs (1 PB=

1015 B, nearly the 250 B). HDFS stores the data in a distributed manner in order to compute

fast. The distributed data store in HDFS stores data in any format regardless of schema.

2.3.1 HDFS Storage

Hadoop data store concept implies storing the data at a number of dusters. Each cluster has a

number of data stores, called racks. Each rack stores a number of DataNodes. Each DataNode

has a large number of data blocks. The racks distribute across a cluster. The nodes have

processing and storage capabilities. The nodes have the data in data blocks to run the application

tasks. The data blocks replicate by default at least on three DataNodes in same or remote nodes.

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 6

6 Big Data Analytics (18CS72)

Data at the stores enable running the distributed applications including analytics, data mining,

OLAP using the clusters. A file, containing the data divides into data blocks. A data block

default size is 64 MBs

Hadoop HDFS features are as follows

i. Create, append, delete, rename and attribute modification functions

ii. Content of individual file cannot be modified or replaced but appended with new data at

the end of the file

iii. Write once but read many times during usages and processing

iv. Average file size can be more than 500 MB.

Figure 2.3 A Hadoop cluster example,

Consider a data storage for University students. Each student data, stuData which is in a file of

size less than 64 MB (1 MB= 220 B). A data block stores the full file data for a student of

stuData_idN, whereN = 1 to 500.

i. How the files of each student will be distributed at a Hadoop cluster? How many student

data can be stored at one cluster? Assume that each rack has two DataNodes for processing each

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 7

7 Big Data Analytics (18CS72)

of 64 GB (1 GB= 230 B) memory. Assume that cluster consists of 120 racks, and thus 240

DataNodes.

ii. What is the total memory capacity of the cluster in TB ((1 TB= 240 B) and DataNodes

in each rack?

iii. Show the distributed blocks for students with ID= 96 and 1025. Assume default

replication in the DataNodes = 3.

iv. What shall be the changes when a stuData file sizes 128 MB?

SOLUTION

i. Data block default size is 64 MB. Each students file size is less than 64MB. Therefore,

for each student file one data block suffices. A data block is in a DataNode. Assume, for

simplicity, each rack has two nodes each of memory capacity = 64 GB. Each node can thus store

64 GB/64MB = 1024 data blocks = 1024 student files. Each rack can thus store 2 x 64 GB/64MB

= 2048 data blocks = 2048 student files. Each data block default replicates three times in the

DataNodes. Therefore, the number of students whose data can be stored in the cluster = number

of racks multiplied by number of files divided by 3 = 120 x 2048/3 = 81920. Therefore, the

maximum number of 81920 stuData_IDN files can be distributed per cluster, with N = 1 to

81920.

ii. Total memory capacity of the cluster = 120 x 128 MB = 15360 GB = 15 TB. Total

memory capacity of each DataNode in each rack= 1024 x 64 MB= 64 GB.

iii. Figure 2.3 shows a Hadoop cluster example, and the replication of data blocks in racks

for two students of IDs 96 and 1025. Each stuData file stores at two data blocks, of capacity

64 MB each.

iv. Changes will be that each node will have half the number of data blocks.

2.3.1.1 Hadoop Physical organization

Figure 2.4 shows the client, master NameNode, primary and secondary MasterNodes and slave

nodes in the Hadoop physical architecture. Clients as the users run the application with the help

of Hadoop ecosystem projects. For example, Hive, Mahout and Pig are the ecosystem's projects.

They are not required to be present at the Hadoop cluster.

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 8

8 Big Data Analytics (18CS72)

Figure 2.4 The client, master NameNode, MasterNodes and slave nodes

A single MasterNode provides HDFS, MapReduce and Hbase using threads in small to medium

sized clusters. When the cluster size is large, multiple servers are used, such as to balance the

load. The secondary NameNode provides NameNode management services and Zookeeper is

used by HBase for metadata storage.

The MasterNode fundamentally plays the role of a coordinator. The MasterNode receives client

connections, maintains the description of the global file system namespace, and the allocation

of file blocks. It also monitors the state of the system in order to detect any failure. The Masters

consists of three components NameNode, Secondary NameNode and JobTracker. The

NameNode stores all the file system related information such as:

 The file section is stored in which part of the cluster

 Last access time for the files

 User permissions like which user has access to the file.

Secondary NameNode is an alternate for NameNode. Secondary node keeps a copy of

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 9

9 Big Data Analytics (18CS72)

NameNode meta data. Thus, stored meta data can be rebuilt easily, in case ofNameNode failure.

TheJobTracker coordinates the parallel processing of data.

2.3.1.1 Hadoop 2

 Single Name Node failure in Hadoop 1 is an operational limitation.

 Scaling up was restricted to scale beyond a few thousands of DataNodes and number
of Clusters.

 Hadoop 2 provides the multiple NameNodes which enables higher resources
availability

2.3.1.2 HDFS commands

2.4 MAPREDUCE FRAMEWORK AND PROGRAMMING MODEL

Mapper means software for doing the assigned task after organizing the data blocks imported

using the keys. A key specifies in a command line of Mapper. The command maps the key to

the data, which an application uses.

Reducer means software for reducing the mapped data by using the aggregation, query or user-

specified function. The reducer provides a concise cohesive response for the application.

Aggregation function means the function that groups the values of multiple rows together to

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 10

10 Big Data Analytics (18CS72)

result a single value of more significant meaning or measurement. For example, function such

as count, sum, maximum, minimum, deviation and standard deviation.

Querying function means a function that finds the desired values. For example, function for

finding a best student of a class who has shown the best performance in examination.

MapReduce allows writing applications to process reliably the huge amounts of data, in

parallel, on large clusters of servers. The cluster size does not limit as such to process in parallel.

The parallel programs of MapReduce are useful for performing large scale data analysis using

multiple machines in the cluster.

Features o fMapReduce framework are as follows:

 Provides automatic parallelization and distribution of computation based on several

processors

 Processes data stored on distributed clusters of DataNodes and racks

 Allows processing large amount of data in parallel

 Provides scalability for usages of large number of servers

 Provides Map Reduce batch-oriented programming model in Hadoop version 1

 Provides additional processing modes in Hadoop 2 YARN-based system and enables

required parallel processing. For example, for queries, graph databases, streaming

data, messages, real-time OLAP and ad hoc analytics with Big Data 3V

characteristics.

2.5 HADOOP YARN

 YARN is a resource a management platform. It manages the computer resources.

 YARN manages the schedules for running the sub tasks. Each sub tasks uses the

resources in the allotted interval time.

 YARN separates the resources management and processing components.

 It stands for YET ANOTHER RESOURCE NEGOTIATOR , it manages and allocates

resources for the application sub tasks and submit the resources for them in the Hadoop

system.

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 11

11 Big Data Analytics (18CS72)

Hadoop 2 Execution Model

Figure 2.5 YARN based Execution Model

The figure shows the YARN components-Client, Resource Manager (RM), Node Manager

(NM), Application Master (AM) and Containers.

Figure 2.5 also illustrates YARN components namely, Client, Resource Manager (RM), Node

Manager (RM), Application Master (AM) and Containers.

List of actions of YARN resource allocation and scheduling functions is as follows:

A MasterNode has two components: (i) Job History Server and (ii) Resource Manager(RM).

A Client Node submits the request of an application to the RM. The RM is the master. One RM

exists per cluster. The RM keeps information of all the slave NMs. Information is about the

location (Rack Awareness) and the number of resources (data blocks and servers) they have.

The RM also renders the Resource Scheduler service that decides how to assign the resources.

It, therefore, performs resource management as well as scheduling.

Multiple NMs are at a cluster. An NM creates an AM instance (AMI) and starts up. The AMI

initializes itself and registers with the RM. Multiple AMis can be created in an AM.

The AMI performs role of an Application Manager (ApplM), that estimates the resources

requirement for running an application program or sub- task. The ApplMs send their requests

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 12

12 Big Data Analytics (18CS72)

for the necessary resources to the RM. Each NM includes several containers for uses by the

subtasks of the application.

NM is a slave of the infrastructure. It signals whenever it initializes. All active NMs send the

controlling signal periodically to the RM signaling their presence.

2.6 HADOOP ECOSYSTEM TOOLS

ZooKeeper-
Coordination
service

Provisions high-performance coordination service for distributed
running of applications and tasks

Avro-Data
serialization
and transfer
utility

Provisions data serialization during data transfer between application
and processing layers

Oozie Provides a way to package and bundles multiple coordinator and

workflow jobs and manage the lifecycle of those jobs

Sqoop
(SQL-to-
Hadoop)-A
data-transfer
software

Provisions for data-transfer between data stores such as relational DBs
and Hadoop

Flume - Large
data transfer
utility

Provisions for reliable data transfer and provides for recovery in case of
failure. Transfers large amount of data in applications, such as related to
social-media messages

Ambari-A
web-based tool

Provisions, monitors, manages, and viewing of functioning of the
cluster, MapReduce, Hive and Pig APis

Chukwa-A
data collection
system

Provisions and manages data collection system for large and distributed
systems

HBase-A
structured
data store
using database

Provisions a scalable and structured database for large tables (Section
2.6.3)

Cassandra - A
database

Provisions scalable and fault-tolerant database for multiple masters
(Section 3.7)

SUNIL G L, A.P, DEPT. OF CSE, SVIT , BENGALURU 13

13 Big Data Analytics (18CS72)

Hive -A data
warehouse
system

Provisions data aggregation, data-summarization, data warehouse
infrastructure, ad hoc (unstructured) querying and SQL-like scripting
language for query processing using HiveQL (Sections 2.6.4, 4.4 and 4.5)

Pig-A high-
level dataflow
language

Provisions dataflow (DF) functionality and the execution framework for
parallel computations

Mahout-A Provisions scalable machine learning and library functions for data
mining and analytics

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 24

Module 2
1. Essential Hadoop Tools

In This Chapter:

 The Pig scripting tool is introduced as a way to quickly examine data both locally and on a Hadoop
cluster.

 The Hive SQL-like query tool is explained using two examples.

 The Sqoop RDBMS tool is used to import and export data from MySQL to/from HDFS.

 The Flume streaming data transport utility is configured to capture weblog data into HDFS.

 The Oozie workflow manager is used to run basic and complex Hadoop workflows.

 The distributed HBase database is used to store and access data on a Hadoop cluster.

USING APACHE PIG
Apache Pig is a high-level language that enables programmers to write complex MapReduce

transformations using a simple scripting language. Pig Latin (the actual language) defines a

set of transformations on a data set such as aggregate, join, and sort.

Apache Pig has several usage modes.

 The first is a local mode in which all processing is done on the local machine.

 The non-local (cluster) modes are MapReduce and Tez. These modes execute the job

on the cluster using either the MapReduce engine or the optimized Tez engine.

There are also interactive and batch modes available; they enable Pig applications to be

developed locally in interactive modes, using small amounts of data, and then run at scale on

the cluster in a production mode. The modes are summarized in Table 7.1.

Table 7.1 Apache Pig Usage Modes

Pig Example Walk-Through

In this simple example, Pig is used The following example assumes the user is hdfs, but any
valid user with access to HDFS can run the example.
To begin the example, copy the passwd file to a working directory for local Pig operation:
$ cp /etc/passwd .

Next, copy the data file into HDFS for Hadoop MapReduce operation:

$ hdfs dfs -put passwd passwd

You can confirm the file is in HDFS by entering the following command:
hdfs dfs -ls passwd

-rw-r--r-- 2 hdfs hdfs 2526 2015-03-17 11:08 passwd

In the following example of local Pig operation, all processing is done on the local machine
(Hadoop is not used). First, the interactive command line is started:

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 25

$ pig -x local

If Pig starts correctly, you will see a grunt> prompt. Next, enter the following commands to
load the passwd file and then grab the user name and dump it to the terminal. Note that Pig
commands must end with a semicolon (;).
grunt> A = load 'passwd' using PigStorage(':');
grunt> B = foreach A generate $0 as id;
grunt> dump B;

The processing will start and a list of user names will be printed to the screen. To exit the
interactive session, enter the command quit.
$ grunt> quit

To use Hadoop MapReduce, start Pig as follows (or just enter pig):
$ pig -x mapreduce

The same sequence of commands can be entered at the grunt> prompt. You may wish to
change the $0 argument to pull out other items in the passwd file. Also, because we are
running this application under Hadoop, make sure the file is placed in HDFS.
If you are using the Hortonworks HDP distribution with tez installed, the tez engine can be
used as follows:
$ pig -x tez

Pig can also be run from a script. This script, which is repeated here, is designed to do the
same things as the interactive version:
/* id.pig */
A = load 'passwd' using PigStorage(':'); -- load the passwd file
B = foreach A generate $0 as id; -- extract the user IDs
dump B;
store B into 'id.out'; -- write the results to a directory name id.out

Comments are delineated by /* */ and -- at the end of a line. First, ensure that the id.out
directory is not in your local directory, and then start Pig with the script on the command line:
$ /bin/rm -r id.out/
$ pig -x local id.pig

If the script worked correctly, you should see at least one data file with the results and a zero-
length file with the name _SUCCESS. To run the MapReduce version, use the same
procedure; the only difference is that now all reading and writing takes place in HDFS.
$ hdfs dfs -rm -r id.out
$ pig id.pig

USING APACHE HIVE
Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data
summarization, ad hoc queries, and the analysis of large data sets using a SQL-like language
called HiveQL. Hive offers the following features:

 Tools to enable easy data extraction, transformation, and loading (ETL)
 A mechanism to impose structure on a variety of data formats

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 26

 Access to files stored either directly in HDFS or in other data storage systems such as

HBase

 Query execution via MapReduce and Tez (optimized MapReduce)

Hive Example Walk-Through
To start Hive, simply enter the hive command. If Hive starts correctly, you should get a hive>
prompt.
$ hive
(some messages may show up here)
hive>

As a simple test, create and drop a table. Note that Hive commands must end with a
semicolon (;).
hive> CREATE TABLE pokes (foo INT, bar STRING);
OK
Time taken: 1.705 seconds
hive> SHOW TABLES;
OK
pokes
Time taken: 0.174 seconds, Fetched: 1 row(s)
hive> DROP TABLE pokes;
OK
Time taken: 4.038 seconds

A more detailed example can be developed using a web server log file to summarize message

types. First, create a table using the following command:

hive> CREATE TABLE logs(t1 string, t2 string, t3 string, t4 string, t5 string, t6 string, t7 string) ROW
FORMAT DELIMITED FIELDS TERMINATED BY ' ';
OK
Time taken: 0.129 seconds

Next, load the data—in this case, from the sample.log file. Note that the file is found in the

local directory and not in HDFS.

hive> LOAD DATA LOCAL INPATH 'sample.log' OVERWRITE INTO TABLE logs;
Loading data to table default.logs
Table default.logs stats: [numFiles=1, numRows=0, totalSize=99271, rawDataSize=0]
OK
Time taken: 0.953 seconds

Finally, apply the select step to the file. Note that this invokes a Hadoop MapReduce

operation. The results appear at the end of the output (e.g., totals for the message

types DEBUG, ERROR, and so on).

hive> SELECT t4 AS sev, COUNT(*) AS cnt FROM logs WHERE t4 LIKE '[%' GROUP BY t4;
Query ID = hdfs_20150327130000_d1e1a265-a5d7-4ed8-b785-2c6569791368
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
 set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 27

 set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
 set mapreduce.job.reduces=<number>
Starting Job = job_1427397392757_0001, Tracking URL = http://norbert:8088/proxy/
application_1427397392757_0001/
Kill Command = /opt/hadoop-2.6.0/bin/hadoop job -kill job_1427397392757_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2015-03-27 13:00:17,399 Stage-1 map = 0%, reduce = 0%
2015-03-27 13:00:26,100 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.14 sec
2015-03-27 13:00:34,979 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.07 sec
MapReduce Total cumulative CPU time: 4 seconds 70 msec
Ended Job = job_1427397392757_0001
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.07 sec HDFS Read: 106384
HDFS Write: 63 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 70 msec
OK
[DEBUG] 434
[ERROR] 3
[FATAL] 1
[INFO] 96
[TRACE] 816
[WARN] 4
Time taken: 32.624 seconds, Fetched: 6 row(s)

To exit Hive, simply type exit;
hive> exit;

A More Advanced Hive Example

In this example, 100,000 records will be transformed from userid, movieid, rating, unixtime
to userid, movieid, rating, and weekday using Apache Hive and a Python program (i.e., the
UNIX time notation will be transformed to the day of the week). The first step is to download
and extract the data:
$ wget http://files.grouplens.org/datasets/movielens/ml-100k.zip
$ unzip ml-100k.zip
$ cd ml-100k

Before we use Hive, we will create a short Python program called weekday_mapper.py with
following contents:
import sys
import datetime

for line in sys.stdin:
 line = line.strip()
 userid, movieid, rating, unixtime = line.split('\t')
 weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
 print '\t'.join([userid, movieid, rating, str(weekday)])LOAD DATA LOCAL INPATH './u.data'
OVERWRITE INTO TABLE u_data;

Next, start Hive and create the data table (u_data) by entering the following at the hive>

prompt:

CREATE TABLE u_data (
 userid INT,
 movieid INT,

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 28

 rating INT,
 unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

Load the movie data into the table with the following command:
hive> LOAD DATA LOCAL INPATH './u.data' OVERWRITE INTO TABLE u_data;

The number of rows in the table can be reported by entering the following command:
hive > SELECT COUNT(*) FROM u_data;

This command will start a single MapReduce job and should finish with the following lines:

...
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.26 sec HDFS Read: 1979380
HDFS Write: 7 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 260 msec
OK
100000
Time taken: 28.366 seconds, Fetched: 1 row(s)
Now that the table data are loaded, use the following command to make the new table

(u_data_new):

hive> CREATE TABLE u_data_new (
 userid INT,
 movieid INT,
 rating INT,
 weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';
The next command adds the weekday_mapper.py to Hive resources:

hive> add FILE weekday_mapper.py;

Once weekday_mapper.py is successfully loaded, we can enter the transformation query:

hive> INSERT OVERWRITE TABLE u_data_new
SELECT
 TRANSFORM (userid, movieid, rating, unixtime)
 USING 'python weekday_mapper.py'
 AS (userid, movieid, rating, weekday)
FROM u_data;

If the transformation was successful, the following final portion of the output should be
displayed:
...
Table default.u_data_new stats: [numFiles=1, numRows=100000, totalSize=1179173,
rawDataSize=1079173]
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Cumulative CPU: 3.44 sec HDFS Read: 1979380 HDFS Write:
1179256 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 440 msec
OK
Time taken: 24.06 seconds

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 29

The final query will sort and group the reviews by weekday:
hive> SELECT weekday, COUNT(*) FROM u_data_new GROUP BY weekday;

Final output for the review counts by weekday should look like the following:
...
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.39 sec HDFS Read: 1179386
HDFS Write: 56 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 390 msec
OK
1 13278
2 14816
3 15426
4 13774
5 17964
6 12318
7 12424
Time taken: 22.645 seconds, Fetched: 7 row(s)

As shown previously, you can remove the tables used in this example with the DROP
TABLE command. In this case, we are also using the -e command-line option. Note that
queries can be loaded from files using the -f option as well.
$ hive -e 'drop table u_data_new'
$ hive -e 'drop table u_data'

USING APACHE SQOOP TO ACQUIRE RELATIONAL DATA

Sqoop is a tool designed to transfer data between Hadoop and relational databases. You can

use Sqoop to import data from a relational database management system (RDBMS) into the

Hadoop Distributed File System (HDFS), transform the data in Hadoop, and then export the

data back into an RDBMS.

Sqoop can be used with any Java Database Connectivity (JDBC)–compliant database and has

been tested on Microsoft SQL Server, PostgresSQL, MySQL, and Oracle.

Apache Sqoop Import and Export Methods

Figure 7.1 describes the Sqoop data import (to HDFS) process. The data import is done in

two steps. In the first step, shown in the figure, Sqoop examines the database to gather the

necessary metadata for the data to be imported. The second step is a map-only (no reduce

step) Hadoop job that Sqoop submits to the cluster. This job does the actual data transfer

using the metadata captured in the previous step. Note that each node doing the import must

have access to the database.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 30

Figure 7.1 Two-step Apache Sqoop data import method (Adapted from Apache Sqoop Documentation)

The imported data are saved in an HDFS directory. Sqoop will use the database name for the

directory, or the user can specify any alternative directory where the files should be

populated. By default, these files contain comma-delimited fields, with new lines separating

different records. You can easily override the format in which data are copied over by

explicitly specifying the field separator and record terminator characters. Once placed in

HDFS, the data are ready for processing.

Data export from the cluster works in a similar fashion. The export is done in two steps, as

shown in Figure 7.2. As in the import process, the first step is to examine the database for

metadata. The export step again uses a map-only Hadoop job to write the data to the database.

Sqoop divides the input data set into splits, then uses individual map tasks to push the splits

to the database. Again, this process assumes the map tasks have access to the database.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 31

Figure 7.2 Two-step Sqoop data export method (Adapted from Apache Sqoop Documentation)

Apache Sqoop Version Changes

Sqoop Version 1 uses specialized connectors to access external systems. These connectors

are often optimized for various RDBMSs or for systems that do not support JDBC.

Connectors are plug-in components based on Sqoop’s extension framework and can be added

to any existing Sqoop installation. Once a connector is installed, Sqoop can use it to

efficiently transfer data between Hadoop and the external store supported by the connector.

By default, Sqoop version 1 includes connectors for popular databases such as MySQL,

PostgreSQL, Oracle, SQL Server, and DB2. It also supports direct transfer to and from the

RDBMS to HBase or Hive.

In contrast, to streamline the Sqoop input methods, Sqoop version 2 no longer supports

specialized connectors or direct import into HBase or Hive. All imports and exports are done

through the JDBC interface. Table 7.2 summarizes the changes from version 1 to version 2.

Due to these changes, any new development should be done with Sqoop version 2.

Table 7.2 Apache Sqoop Version Comparison

Sqoop Example Walk-Through

The following simple example illustrates use of Sqoop

Step 1: Load Sample MySQL Database

$ wget http://downloads.mysql.com/docs/world_innodb.sql.gz
$ gunzip world_innodb.sql.gz

Next, log into MySQL (assumes you have privileges to create a database) and import the

desired database by following these steps:

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 32

 $ mysql -u root -p
 mysql> CREATE DATABASE world;
 mysql> USE world;
 mysql> SOURCE world_innodb.sql;
 mysql> SHOW TABLES;
 +-----------------+
 | Tables_in_world |
 +-----------------+
 | City |
 | Country |
 | CountryLanguage |
 +-----------------+
 3 rows in set (0.01 sec)

The following MySQL command will let you see the table details.

Step 2: Add Sqoop User Permissions for the Local Machine and Cluster

In MySQL, add the following privileges for user sqoop to MySQL. Note that you must use

both the local host name and the cluster subnet for Sqoop to work properly. Also, for the

purposes of this example, the sqoop password is sqoop.

mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'limulus' IDENTIFIED BY 'sqoop';
mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'10.0.0.%' IDENTIFIED BY 'sqoop';
mysql> quit

Next, log in as sqoop to test the permissions:

$ mysql -u sqoop -p
 mysql> USE world;
 mysql> SHOW TABLES;
 +-----------------+
 | Tables_in_world |
 +-----------------+
 | City |
 | Country |
 | CountryLanguage |
 +-----------------+
 3 rows in set (0.01 sec)

 mysql> quit

Step 3: Import Data Using Sqoop

As a test, we can use Sqoop to list databases in MySQL. The results appear after the warnings

at the end of the output. Note the use of local host name (limulus) in the JDBC statement.

$ sqoop list-databases --connect jdbc:mysql://limulus/world --username sqoop --password sqoop
 Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail.
 Please set $ACCUMULO_HOME to the root of your Accumulo installation.
 14/08/18 14:38:55 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471
 14/08/18 14:38:55 WARN tool.BaseSqoopTool: Setting your password on the
command-line is insecure. Consider using -P instead.
 14/08/18 14:38:55 INFO manager.MySQLManager: Preparing to use a MySQL streaming
resultset.
 information_schema

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 33

 test
 world

In a similar fashion, you can use Sqoop to connect to MySQL and list the tables in the world

database:

 sqoop list-tables --connect jdbc:mysql://limulus/world --username sqoop --password sqoop
 ...
 14/08/18 14:39:43 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471
 14/08/18 14:39:43 WARN tool.BaseSqoopTool: Setting your password on the
command-line is insecure. Consider using -P instead.
 14/08/18 14:39:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming
resultset.
 City
 Country
 CountryLanguage

To import data, we need to make a directory in HDFS:

$ hdfs dfs -mkdir sqoop-mysql-import

The following command imports the Country table into HDFS. The option -table signifies the

table to import, --target-dir is the directory created previously, and -m 1 tells Sqoop to use

one map task to import the data.

$ sqoop import --connect jdbc:mysql://limulus/world --username sqoop --password sqoop --table
Country -m 1 --target-dir /user/hdfs/sqoop-mysql-import/country
 ...
 14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Transferred 30.752 KB in
12.7348 seconds
 (2.4148 KB/sec)
 14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Retrieved 239 records.

The import can be confirmed by examining HDFS:

$ hdfs dfs -ls sqoop-mysql-import/country
 Found 2 items
 -rw-r--r-- 2 hdfs hdfs 0 2014-08-18 16:47 sqoop-mysql-import/
world/_SUCCESS
 -rw-r--r-- 2 hdfs hdfs 31490 2014-08-18 16:47 sqoop-mysql-import/world/
part-m-00000

The file can be viewed using the hdfs dfs -cat command:

$ hdfs dfs -cat sqoop-mysql-import/country/part-m-00000
 ABW,Aruba,North America,Caribbean,193.0,null,103000,78.4,828.0,793.0,Aruba,
Nonmetropolitan
 Territory of The Netherlands,Beatrix,129,AW
 ...
 ZWE,Zimbabwe,Africa,Eastern Africa,390757.0,1980,11669000,37.8,5951.0,8670.0,
Zimbabwe,
 Republic,Robert G. Mugabe,4068,ZW

To make the Sqoop command more convenient, you can create an options file and use it on the

command line. Such a file enables you to avoid having to rewrite the same options. For

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 34

example, a file called world-options.txt with the following contents will include

the import command, --connect, --username, and --password options:

 import
 --connect
 jdbc:mysql://limulus/world
 --username
 sqoop
 --password
 sqoop

The same import command can be performed with the following shorter line:
$ sqoop --options-file world-options.txt --table City -m 1 --target-dir /user/hdfs/sqoop-mysql-import/city

It is also possible to include an SQL Query in the import step. For example, suppose we want

just cities in Canada:

SELECT ID,Name from City WHERE CountryCode='CAN'
In such a case, we can include the --query option in the Sqoop import request. The --

query option also needs a variable called $CONDITIONS, which will be explained next. In

the following query example, a single mapper task is designated with the -m 1 option:

sqoop --options-file world-options.txt -m 1 --target-dir /user/hdfs/sqoop-mysql-import/canada-city --
query "SELECT ID,Name from City WHERE CountryCode='CAN' AND \$CONDITIONS"

Inspecting the results confirms that only cities from Canada have been imported:

 $ hdfs dfs -cat sqoop-mysql-import/canada-city/part-m-00000

 1810,MontrÄal

 1811,Calgary

 1812,Toronto

 ...

 1856,Sudbury

 1857,Kelowna

 1858,Barrie

Since there was only one mapper process, only one copy of the query needed to be run on the

database. The results are also reported in a single file (part-m-0000).

Multiple mappers can be used to process the query if the --split-by option is used. The split-

by option is used to parallelize the SQL query. Each parallel task runs a subset of the main

query, with the results of each sub-query being partitioned by bounding conditions inferred

by Sqoop. Your query must include the token $CONDITIONS that each Sqoop process will

replace with a unique condition expression based on the --split-by option. Note

that $CONDITIONS is not an environment variable. Although Sqoop will try to create

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 35

balanced sub-queries based on the range of your primary key, it may be necessary to split on

another column if your primary key is not uniformly distributed.

The following example illustrates the use of the --split-by option. First, remove the results of

the previous query:

 $ hdfs dfs -rm -r -skipTrash sqoop-mysql-import/canada-city

Next, run the query using four mappers (-m 4), where we split by the ID number (--split-by
ID):
sqoop --options-file world-options.txt -m 4 --target-dir /user/hdfs/sqoop-mysql-import/canada-city --
query "SELECT ID,Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" --split-by
ID

If we look at the number of results files, we find four files corresponding to the four mappers

we requested in the command:

$ hdfs dfs -ls sqoop-mysql-import/canada-city
Found 5 items
-rw-r--r-- 2 hdfs hdfs 0 2014-08-18 21:31 sqoop-mysql-import/
canada-city/_SUCCESS
-rw-r--r-- 2 hdfs hdfs 175 2014-08-18 21:31 sqoop-mysql-import/canada-city/
part-m-00000
-rw-r--r-- 2 hdfs hdfs 153 2014-08-18 21:31 sqoop-mysql-import/canada-city/
part-m-00001
-rw-r--r-- 2 hdfs hdfs 186 2014-08-18 21:31 sqoop-mysql-import/canada-city/
part-m-00002
-rw-r--r-- 2 hdfs hdfs 182 2014-08-18 21:31 sqoop-mysql-import/canada-city/
part-m-00003

Step 4: Export Data from HDFS to MySQL

Sqoop can also be used to export data from HDFS. The first step is to create tables for

exported data. There are actually two tables needed for each exported table. The first table

holds the exported data (CityExport), and the second is used for staging the exported data

(CityExportStaging). Enter the following MySQL commands to create these tables:

 mysql> CREATE TABLE 'CityExport' (
 'ID' int(11) NOT NULL AUTO_INCREMENT,
 'Name' char(35) NOT NULL DEFAULT '',
 'CountryCode' char(3) NOT NULL DEFAULT '',
 'District' char(20) NOT NULL DEFAULT '',
 'Population' int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY ('ID'));
 mysql> CREATE TABLE 'CityExportStaging' (
 'ID' int(11) NOT NULL AUTO_INCREMENT,
 'Name' char(35) NOT NULL DEFAULT '',
 'CountryCode' char(3) NOT NULL DEFAULT '',
 'District' char(20) NOT NULL DEFAULT '',
 'Population' int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY ('ID'));

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 36

Next, create a cities-export-options.txt file similar to the world-options.txt created previously,

but use the export command instead of the import command.

The following command will export the cities data we previously imported back into

MySQL:

sqoop --options-file cities-export-options.txt --table CityExport --staging-table CityExportStaging --
clear-staging-table -m 4 --export-dir /user/hdfs/sqoop-mysql-import/city

Finally, to make sure everything worked correctly, check the table in MySQL to see if the

cities are in the table:

 $ mysql> select * from CityExport limit 10;
 +----+----------------+-------------+---------------+------------+
 | ID | Name | CountryCode | District | Population |
 +----+----------------+-------------+---------------+------------+
1	Kabul	AFG	Kabol	1780000
2	Qandahar	AFG	Qandahar	237500
3	Herat	AFG	Herat	186800
4	Mazar-e-Sharif	AFG	Balkh	127800
5	Amsterdam	NLD	Noord-Holland	731200
6	Rotterdam	NLD	Zuid-Holland	593321
7	Haag	NLD	Zuid-Holland	440900
8	Utrecht	NLD	Utrecht	234323
9	Eindhoven	NLD	Noord-Brabant	201843
10	Tilburg	NLD	Noord-Brabant	193238
 +----+----------------+-------------+---------------+------------+
 10 rows in set (0.00 sec)

Some Handy Cleanup Commands

If you are not especially familiar with MySQL, the following commands may be helpful to

clean up the examples. To remove the table in MySQL, enter the following command:

mysql> drop table 'CityExportStaging';

To remove the data in a table, enter this command:
mysql> delete from CityExportStaging;

To clean up imported files, enter this command:

$ hdfs dfs -rm -r -skipTrash sqoop-mysql-import/{country,city, canada-city}

USING APACHE FLUME TO ACQUIRE DATA STREAMS

Apache Flume is an independent agent designed to collect, transport, and store data into

HDFS. Often data transport involves a number of Flume agents that may traverse a series of

machines and locations. Flume is often used for log files, social media-generated data, email

messages, and just about any continuous data source. As shown in Figure 7.3, a Flume agent

is composed of three components.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 37

Figure 7.3 Flume agent with source, channel, and sink (Adapted from Apache Flume Documentation)

 Source. The source component receives data and sends it to a channel. It can send the data

to more than one channel. The input data can be from a real-time source (e.g., weblog) or

another Flume agent.

 Channel. A channel is a data queue that forwards the source data to the sink destination. It

can be thought of as a buffer that manages input (source) and output (sink) flow rates.

 Sink. The sink delivers data to destination such as HDFS, a local file, or another Flume

agent.

A Flume agent must have all three of these components defined. A Flume agent can have

several sources, channels, and sinks. Sources can write to multiple channels, but a sink can

take data from only a single channel. Data written to a channel remain in the channel until a

sink removes the data. By default, the data in a channel are kept in memory but may be

optionally stored on disk to prevent data loss in the event of a network failure.

As shown in Figure 7.4, Sqoop agents may be placed in a pipeline, possibly to traverse

several machines or domains. This configuration is normally used when data are collected on

one machine (e.g., a web server) and sent to another machine that has access to HDFS.

Figure 7.4 Pipeline created by connecting Flume agents (Adapted from Apache Flume Sqoop Documentation)

In a Flume pipeline, the sink from one agent is connected to the source of another. The data

transfer format normally used by Flume, which is called Apache Avro, provides several

useful features. First, Avro is a data serialization/deserialization system that uses a compact

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 38

binary format. The schema is sent as part of the data exchange and is defined using JSON

(JavaScript Object Notation). Avro also uses remote procedure calls (RPCs) to send data.

That is, an Avro sink will contact an Avro source to send data.

Another useful Flume configuration is shown in Figure 7.5. In this configuration, Flume is

used to consolidate several data sources before committing them to HDFS.

Figure 7.5 A Flume consolidation network (Adapted from Apache Flume Documentation)

There are many possible ways to construct Flume transport networks. In addition, other

Flume features not described in depth here include plug-ins and interceptors that can enhance

Flume pipelines.

Flume Example Walk-Through
Follow these steps to walk through a Flume example.

Step 1: Download and Install Apache Flume

Step 2: Simple Test

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 39

A simple test of Flume can be done on a single machine. To start the Flume agent, enter

the flume-ng command shown here. This command uses the simple-example.conf file to

configure the agent.

$ flume-ng agent --conf conf --conf-file simple-example.conf --name simple_agent -
Dflume.root.logger=INFO,console

In another terminal window, use telnet to contact the agent:

$ telnet localhost 44444
 Trying ::1...
 telnet: connect to address ::1: Connection refused
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is '^]'.
 testing 1 2 3
 OK

If Flume is working correctly, the window where the Flume agent was started will show the

testing message entered in the telnet window:

Step 3: Weblog Example

In this example, a record from the weblogs from the local machine (Ambari output) will be

placed into HDFS using Flume. This example is easily modified to use other weblogs from

different machines. Two files are needed to configure Flume. (See the sidebar and Appendix

A for file downloading instructions.)

 web-server-target-agent.conf—the target Flume agent that writes the data to HDFS
 web-server-source-agent.conf—the source Flume agent that captures the weblog data

The weblog is also mirrored on the local file system by the agent that writes to HDFS. To run

the example, create the directory as root:

mkdir /var/log/flume-hdfs
chown hdfs:hadoop /var/log/flume-hdfs/

Next, as user hdfs, make a Flume data directory in HDFS:

$ hdfs dfs -mkdir /user/hdfs/flume-channel/

Now that you have created the data directories, you can start the Flume target agent (execute

as user hdfs):

$ flume-ng agent -c conf -f web-server-target-agent.conf -n collector

This agent writes the data into HDFS and should be started before the source agent. (The

source reads the weblogs.) This configuration enables automatic use of the Flume agent.

The /etc/flume/conf/{flume.conf, flume-env.sh.template} files need to be configured for this

purpose. For this example, the /etc/flume/conf/flume.conf file can be the same as the web-

server-target.conf file (modified for your environment).

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 40

In this example, the source agent is started as root, which will start to feed the weblog data to

the target agent. Alternatively, the source agent can be on another machine if desired.

flume-ng agent -c conf -f web-server-source-agent.conf -n source_agent

To see if Flume is working correctly, check the local log by using the tail command. Also

confirm that the flume-ng agents are not reporting any errors (the file name will vary).

$ tail -f /var/log/flume-hdfs/1430164482581-1

The contents of the local log under flume-hdfs should be identical to that written into HDFS.

You can inspect this file by using the hdfs -tail command (the file name will vary). Note that

while running Flume, the most recent file in HDFS may have the extension .tmp appended to

it. The .tmpindicates that the file is still being written by Flume. The target agent can be

configured to write the file (and start another .tmp file) by setting some or all of

the rollCount, rollSize, rollInterval, idleTimeout, and batchSize options in the configuration

file.

$ hdfs dfs -tail flume-channel/apache_access_combined/150427/FlumeData.1430164801381

Both files should contain the same data. For instance, the preceding example had the

following data in both files:

10.0.0.1 - - [27/Apr/2015:16:04:21 -0400] "GET /ambarinagios/nagios/
nagios_alerts.php?q1=alerts&alert_type=all HTTP/1.1" 200 30801 "-" "Java/1.7.0_65"
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 784
"-" "Java/1.7.0_65"
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 508
"-" "Java/1.7.0_65"

MANAGE HADOOP WORKFLOWS WITH APACHE OOZIE
Oozie is a workflow director system designed to run and manage multiple related Apache

Hadoop jobs. For instance, complete data input and analysis may require several discrete

Hadoop jobs to be run as a workflow in which the output of one job serves as the input for a

successive job. Oozie is designed to construct and manage these workflows. Oozie is not a

substitute for the YARN scheduler. That is, YARN manages resources for individual Hadoop

jobs, and Oozie provides a way to connect and control Hadoop jobs on the cluster.

Oozie workflow jobs are represented as directed acyclic graphs (DAGs) of actions. (DAGs

are basically graphs that cannot have directed loops.) Three types of Oozie jobs are

permitted:

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 41

 Workflow—a specified sequence of Hadoop jobs with outcome-based decision points and

control dependency. Progress from one action to another cannot happen until the first action

is complete.

 Coordinator—a scheduled workflow job that can run at various time intervals or when data

become available.

 Bundle—a higher-level Oozie abstraction that will batch a set of coordinator jobs.

Oozie is integrated with the rest of the Hadoop stack, supporting several types of Hadoop

jobs out of the box (e.g., Java MapReduce, Streaming MapReduce, Pig, Hive, and Sqoop) as

well as system-specific jobs (e.g., Java programs and shell scripts). Oozie also provides a CLI

and a web UI for monitoring jobs.

Figure 7.6 depicts a simple Oozie workflow. In this case, Oozie runs a basic MapReduce

operation. If the application was successful, the job ends; if an error occurred, the job is

killed.

Figure 7.6 A simple Oozie DAG workflow (Adapted from Apache Oozie Documentation)

Oozie workflow definitions are written in hPDL (an XML Process Definition Language).

Such workflows contain several types of nodes:

 Control flow nodes define the beginning and the end of a workflow. They include start,

end, and optional fail nodes.

 Action nodes are where the actual processing tasks are defined. When an action node

finishes, the remote systems notify Oozie and the next node in the workflow is executed.

Action nodes can also include HDFS commands.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 42

 Fork/join nodes enable parallel execution of tasks in the workflow. The fork node enables

two or more tasks to run at the same time. A join node represents a rendezvous point that

must wait until all forked tasks complete.

 Control flow nodes enable decisions to be made about the previous task. Control decisions

are based on the results of the previous action (e.g., file size or file existence). Decision nodes

are essentially switch-case statements that use JSP EL (Java Server Pages—Expression

Language) that evaluate to either true or false.

Figure 7.7 depicts a more complex workflow that uses all of these node types.

Figure 7.7 A more complex Oozie DAG workflow (Adapted from Apache Oozie Documentation)

Oozie Example Walk-Through

Step 1: Download Oozie Examples

The Oozie examples used in this section can be found on the book website (see Appendix A).

They are also available as part of the oozie-client.noarch RPM in the Hortonworks HDP 2.x

packages. For HDP 2.1, the following command can be used to extract the files into the

working directory used for the demo:

$ tar xvzf /usr/share/doc/oozie-4.0.0.2.1.2.1/oozie-examples.tar.gz

For HDP 2.2, the following command will extract the files:

$ tar xvzf /usr/hdp/2.2.4.2-2/oozie/doc/oozie-examples.tar.gz

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 43

Once extracted, rename the examples directory to oozie-examples so that you will not

confuse it with the other examples directories.

$ mv examples oozie-examples

The examples must also be placed in HDFS. Enter the following command to move the

example files into HDFS:

$ hdfs dfs -put oozie-examples/ oozie-examples
The Oozie shared library must be installed in HDFS. If you are using the Ambari installation

of HDP 2.x, this library is already found in HDFS: /user/oozie/share/lib.

Step 2: Run the Simple MapReduce Example

Move to the simple MapReduce example directory:

$ cd oozie-examples/apps/map-reduce/

This directory contains two files and a lib directory. The files are:

 The job.properties file defines parameters (e.g., path names, ports) for a job. This file may

change per job.

 The workflow.xml file provides the actual workflow for the job. In this case, it is a simple

MapReduce (pass/fail). This file usually stays the same between jobs.

The job.properties file included in the examples requires a few edits to work properly. Using

a text editor, change the following lines by adding the host name of the NameNode and

ResourceManager (indicated by jobTracker in the file).

As shown in Figure 7.6, this simple workflow runs an example MapReduce job and prints an

error message if it fails.

To run the Oozie MapReduce example job from the oozie-examples/apps/map-

reduce directory, enter the following line:

$ oozie job -run -oozie http://limulus:11000/oozie -config job.properties

When Oozie accepts the job, a job ID will be printed:

job: 0000001-150424174853048-oozie-oozi-W

You will need to change the “limulus” host name to match the name of the node running your

Oozie server. The job ID can be used to track and control job progress.

To avoid having to provide the -oozie option with the Oozie URL every time you run

the ooziecommand, set the OOZIE_URL environment variable as follows (using your Oozie

server host name in place of “limulus”):

$ export OOZIE_URL="http://limulus:11000/oozie"

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 44

You can now run all subsequent Oozie commands without specifying the -oozie URL option.

For instance, using the job ID, you can learn about a particular job’s progress by issuing the

following command:

$ oozie job -info 0000001-150424174853048-oozie-oozi-W

The resulting output (line length compressed) is shown in the following listing. Because this

job is just a simple test, it may be complete by the time you issue the -info command. If it is

not complete, its progress will be indicated in the listing.

Job ID : 0000001-150424174853048-oozie-oozi-W
--
Workflow Name : map-reduce-wf
App Path : hdfs://limulus:8020/user/hdfs/examples/apps/map-reduce
Status : SUCCEEDED
Run : 0
User : hdfs
Group : -
Created : 2015-04-29 20:52 GMT
Started : 2015-04-29 20:52 GMT
Last Modified : 2015-04-29 20:53 GMT
Ended : 2015-04-29 20:53 GMT
CoordAction ID: -

Actions
--
ID Status Ext ID Ext Status Err Code
--
0000001-150424174853048-oozie
 -oozi-W@:start: OK - OK -
--
0000001-150424174853048-oozie
 -oozi-W@mr-node OK job_1429912013449_0006 SUCCEEDED -
--
0000001-150424174853048-oozie
 -oozi-W@end OK - OK -
--
The various steps shown in the output can be related directly to the workflow.xml mentioned

previously. Note that the MapReduce job number is provided. This job will also be listed in

the ResourceManager web user interface. The application output is located in HDFS under

the oozie-examples/output-data/map-reduce directory.

Step 3: Run the Oozie Demo Application

A more sophisticated example can be found in the demo directory (oozie-

examples/apps/demo). This workflow includes MapReduce, Pig, and file system tasks as well

as fork, join, decision, action, start, stop, kill, and end nodes.

Move to the demo directory and edit the job.properties file as described previously. Entering

the following command runs the workflow (assuming the OOZIE_URL environment variable

has been set):

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 45

$ oozie job -run -config job.properties

You can track the job using either the Oozie command-line interface or the Oozie web

console. To start the web console from within Ambari, click on the Oozie service, and then

click on the Quick Links pull-down menu and select Oozie Web UI. Alternatively, you can

start the Oozie web UI by connecting to the Oozie server directly. For example, the following

command will bring up the Oozie UI (use your Oozie server host name in place of

“limulus”):

$ firefox http://limulus:11000/oozie/

Figure 7.8 shows the main Oozie console window.

Figure 7.8 Oozie main console window

Workflow jobs are listed in tabular form, with the most recent job appearing first. If you click

on a workflow, the Job Info window in Figure 7.9 will be displayed. The job progression

results, similar to those printed by the Oozie command line, are shown in the Actions window

at the bottom.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 46

Figure 7.9 Oozie workflow information window

Other aspects of the job can be examined by clicking the other tabs in the window. The last

tab actually provides a graphical representation of the workflow DAG. If the job is not

complete, it will highlight the steps that have been completed thus far. The DAG for the

demo example is shown in Figure 7.10. The actual image was split to fit better on the page.

As with the previous example, comparing this information to workflow.xml file can provide

further insights into how Oozie operates.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 47

Figure 7.10 Oozie-generated workflow DAG for the demo example, as it appears on the screen

A Short Summary of Oozie Job Commands

The following summary lists some of the more commonly encountered Oozie commands. See

the latest documentation at http://oozie.apache.org for more information. (Note that the

examples here assume OOZIE_URL is defined.)

 Run a workflow job (returns _OOZIE_JOB_ID_):

$ oozie job -run -config JOB_PROPERITES

 Submit a workflow job (returns _OOZIE_JOB_ID_ but does not start):

$ oozie job -submit -config JOB_PROPERTIES

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 48

 Start a submitted job:

$ oozie job -start _OOZIE_JOB_ID_

 Check a job’s status:

$ oozie job -info _OOZIE_JOB_ID_

 Suspend a workflow:

$ oozie job -suspend _OOZIE_JOB_ID_

 Resume a workflow:

$ oozie job -resume _OOZIE_JOB_ID_

 Rerun a workflow:

$ oozie job -rerun _OOZIE_JOB_ID_ -config JOB_PROPERTIES

 Kill a job:

$ oozie job -kill _OOZIE_JOB_ID_

 View server logs:

$ oozie job -logs _OOZIE_JOB_ID_

Full logs are available at /var/log/oozie on the Oozie server.

USING APACHE HBASE
Apache HBase is an open source, distributed, versioned, nonrelational database modeled after

Google’s Bigtable. Like Bigtable, HBase leverages the distributed data storage provided by

the underlying distributed file systems spread across commodity servers. Apache HBase

provides Bigtable-like capabilities on top of Hadoop and HDFS. Some of the more important

features include the following capabilities:

 Linear and modular scalability

 Strictly consistent reads and writes

 Automatic and configurable sharding of tables

 Automatic failover support between RegionServers

 Convenient base classes for backing Hadoop MapReduce jobs with Apache HBase tables

 Easy-to-use Java API for client access

HBase Data Model Overview

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 49

A table in HBase is similar to other databases, having rows and columns. Columns in HBase

are grouped into column families, all with the same prefix. For example, consider a table of

daily stock prices. There may be a column family called “price” that has four members—

price:open, price:close, price:low, and price:high. A column does not need to be a family. For

instance, the stock table may have a column named “volume” indicating how many shares

were traded. All column family members are stored together in the physical file system.

Specific HBase cell values are identified by a row key, column (column family and column),

and version (timestamp). It is possible to have many versions of data within an HBase cell. A

version is specified as a timestamp and is created each time data are written to a cell. Almost

anything can serve as a row key, from strings to binary representations of longs to serialized

data structures. Rows are lexicographically sorted with the lowest order appearing first in a

table. The empty byte array denotes both the start and the end of a table’s namespace. All

table accesses are via the table row key, which is considered its primary key.

HBase Example Walk-Through

HBase provides a shell for interactive use. To enter the shell, type the following as a user:

$ hbase shell

hbase(main):001:0>

To exit the shell, type exit.

Various commands can be conveniently entered from the shell prompt. For instance,

the status command provides the system status:

hbase(main):001:0> status
4 servers, 0 dead, 1.0000 average load
Additional arguments can be added to the status command, including 'simple', 'summary',

or 'detailed'. The single quotes are needed for proper operation. For example, the following

command will provide simple status information for the four HBase servers (actual server

statistics have been removed for clarity):

hbase(main):002:0> status 'simple'
4 live servers
 n1:60020 1429912048329
 ...
 n2:60020 1429912040653
 ...
 limulus:60020 1429912041396
 ...
 n0:60020 1429912042885
 ...
0 dead servers
Aggregate load: 0, regions: 4

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 50

Other basic commands, such as version or whoami, can be entered directly at

the hbase(main)prompt. In the example that follows, we will use a small set of daily stock

price data for Apple computer. The data have the following form:

The data can be downloaded from Google using the following command. Note that other

stock prices are available by changing the NASDAQ:AAPL argument to any other valid

exchange and stock name (e.g., NYSE: IBM).

$ wget -O Apple-stock.csv
http://www.google.com/finance/historical?q=NASDAQ:AAPL\&authuser=0\&output=csv

The Apple stock price database is in comma-separated format (csv) and will be used to

illustrate some basic operations in the HBase shell.

Create the Database

The next step is to create the database in HBase using the following command:

hbase(main):006:0> create 'apple', 'price' , 'volume'
0 row(s) in 0.8150 seconds
In this case, the table name is apple, and two columns are defined. The date will be used as

the row key. The price column is a family of four values (open, close, low, high).

The put command is used to add data to the database from within the shell. For instance, the

preceding data can be entered by using the following commands:

put 'apple','6-May-15','price:open','126.56'
put 'apple','6-May-15','price:high','126.75'
put 'apple','6-May-15','price:low','123.36'
put 'apple','6-May-15','price:close','125.01'
put 'apple','6-May-15','volume','71820387'

The shell also keeps a history for the session, and previous commands can be retrieved and

edited for resubmission.

Inspect the Database

The entire database can be listed using the scan command. Be careful when using this

command with large databases. This example is for one row.

hbase(main):006:0> scan 'apple'
ROW COLUMN+CELL
 6-May-15 column=price:close, timestamp=1430955128359, value=125.01
 6-May-15 column=price:high, timestamp=1430955126024, value=126.75
 6-May-15 column=price:low, timestamp=1430955126053, value=123.36
 6-May-15 column=price:open, timestamp=1430955125977, value=126.56
 6-May-15 column=volume:, timestamp=1430955141440, value=71820387

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 51

Get a Row

You can use the row key to access an individual row. In the stock price database, the date is

the row key.

hbase(main):008:0> get 'apple', '6-May-15'
COLUMN CELL
 price:close timestamp=1430955128359, value=125.01
 price:high timestamp=1430955126024, value=126.75
 price:low timestamp=1430955126053, value=123.36
 price:open timestamp=1430955125977, value=126.56
 volume: timestamp=1430955141440, value=71820387
5 row(s) in 0.0130 seconds

Get Table Cells

A single cell can be accessed using the get command and the COLUMN option:

hbase(main):013:0> get 'apple', '5-May-15', {COLUMN => 'price:low'}

COLUMN CELL

 price:low timestamp=1431020767444, value=125.78

1 row(s) in 0.0080 seconds

In a similar fashion, multiple columns can be accessed as follows:

hbase(main):012:0> get 'apple', '5-May-15', {COLUMN => ['price:low', 'price:high']}

COLUMN CELL

 price:high timestamp=1431020767444, value=128.45

 price:low timestamp=1431020767444, value=125.78

2 row(s) in 0.0070 seconds

Delete a Cell

A specific cell can be deleted using the following command:

hbase(main):009:0> delete 'apple', '6-May-15' , 'price:low'

If the row is inspected using get, the price:low cell is not listed.

hbase(main):010:0> get 'apple', '6-May-15'
COLUMN CELL
 price:close timestamp=1430955128359, value=125.01
 price:high timestamp=1430955126024, value=126.75
 price:open timestamp=1430955125977, value=126.46
 volume: timestamp=1430955141440, value=71820387
4 row(s) in 0.0130 seconds

Delete a Row

You can delete an entire row by giving the deleteall command as follows:

hbase(main):009:0> deleteall 'apple', '6-May-15'

Remove a Table

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 52

To remove (drop) a table, you must first disable it. The following two commands remove

the appletable from Hbase:

hbase(main):009:0> disable 'apple'
hbase(main):010:0> drop 'apple'

Scripting Input

Commands to the HBase shell can be placed in bash scripts for automated processing. For

instance, the following can be placed in a bash script:

echo "put 'apple','6-May-15','price:open','126.56'" | hbase shell

The book software page includes a script (input_to_hbase.sh) that imports the Apple-

stock.csv file into HBase using this method. It also removes the column titles in the first line.

The script will load the entire file into HBase when you issue the following command:

$ input_to_hbase.sh Apple-stock.csv

While the script can be easily modified to accommodate other types of data, it is not

recommended for production use because the upload is very inefficient and slow. Instead, this

script is best used to experiment with small data files and different types of data.

Adding Data in Bulk

There are several ways to efficiently load bulk data into HBase. Covering all of these

methods is beyond the scope of this chapter. Instead, we will focus on the ImportTsv utility,

which loads data in tab-separated values (tsv) format into HBase. It has two distinct usage

modes:

 Loading data from a tsv-format file in HDFS into HBase via the put command

 Preparing StoreFiles to be loaded via the completebulkload utility

The following example shows how to use ImportTsv for the first option, loading the tsv-

format file using the put command.

The first step is to convert the Apple-stock.csv file to tsv format. The following script, which

is included in the book software, will remove the first line and do the conversion. In doing so,

it creates a file named Apple-stock.tsv.

$ convert-to-tsv.sh Apple-stock.csv

Next, the new file is copied to HDFS as follows:
$ hdfs dfs -put Apple-stock.tsv /tmp

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 53

Finally, ImportTsv is run using the following command line. Note the column designation in

the -Dimporttsv.columns option. In the example, the HBASE_ROW_KEY is set as the first

column—that is, the date for the data.

$ hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -
Dimporttsv.columns=HBASE_ROW_KEY,price:open,price:high,price:low,price:close,volume apple
/tmp/Apple-stock.tsv

The ImportTsv command will use MapReduce to load the data into HBase. To verify that the

command works, drop and re-create the apple database, as described previously, before

running the import command.

8. Hadoop YARN Applications
In This Chapter:

 The YARN Distributed-Shell is introduced as a non-MapReduce application.

 The Hadoop YARN application and operation structure is explained.

 A summary of YARN application frameworks is provided.

YARN DISTRIBUTED-SHELL
The Hadoop YARN project includes the Distributed-Shell application, which is an example

of a Hadoop non-MapReduce application built on top of YARN. Distributed-Shell is a simple

mechanism for running shell commands and scripts in containers on multiple nodes in a

Hadoop cluster. This application is not meant to be a production administration tool, but

rather a demonstration of the non-MapReduce capability that can be implemented on top of

YARN. There are multiple mature implementations of a distributed shell that administrators

typically use to manage a cluster of machines.

In addition, Distributed-Shell can be used as a starting point for exploring and building

Hadoop YARN applications. This chapter offers guidance on how the Distributed-Shell can

be used to understand the operation of YARN applications.

USING THE YARN DISTRIBUTED-SHELL
For the purpose of the examples presented in the remainder of this chapter, we assume and

assign the following installation path, based on Hortonworks HDP 2.2, the Distributed-Shell

application:

$ export YARN_DS=/usr/hdp/current/hadoop-yarn-client/hadoop-yarn-applications-
distributedshell.jar

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 54

For the pseudo-distributed install using Apache Hadoop version 2.6.0, the following path will

run the Distributed-Shell application (assuming $HADOOP_HOME is defined to reflect the

location Hadoop):

$ export YARN_DS=$HADOOP_HOME/share/hadoop/yarn/hadoop-yarn-applications-
distributedshell-2.6.0.jar

If another distribution is used, search for the file hadoop-yarn-applications-

distributedshell*.jar and set $YARN_DS based on its location. Distributed-Shell exposes

various options that can be found by running the following command:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -help

The output of this command follows; we will explore some of these options in the examples

illustrated in this chapter.

usage: Client
 -appname <arg> Application Name. Default value – DistributedShell
 -container_memory <arg> Amount of memory in MB to be requested to run the shell command
 -container_vcores <arg> Amount of virtual cores to be requested to run the shell command
 -create Flag to indicate whether to create the domain specified with -domain.
 -debug Dump out debug information
 -domain <arg> ID of the timeline domain where the timeline entities will be put
 -help Print usage
 -jar <arg> Jar file containing the application master
 -log_properties <arg> log4j.properties file
 -master_memory <arg> Amount of memory in MB to be requested to run the application master
 -master_vcores <arg> Amount of virtual cores to be requested to run the application master
 -modify_acls <arg> Users and groups that allowed to modify the timeline entities in the given domain
 -timeout <arg> Application timeout in milliseconds
 -view_acls <arg> Users and groups that allowed to view the timeline entities in the given domain

A Simple Example

The simplest use-case for the Distributed-Shell application is to run an arbitrary shell

command in a container. We will demonstrate the use of the uptime command as an example.

This command is run on the cluster using Distributed-Shell as follows:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command
uptime

By default, Distributed-Shell spawns only one instance of a given shell command. When this

command is run, you can see progress messages on the screen but nothing about the actual

shell command. If the shell command succeeds, the following should appear at the end of the

output:

15/05/27 14:48:53 INFO distributedshell.Client: Application completed successfully

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 55

If the shell command did not work for whatever reason, the following message will be

displayed:

15/05/27 14:58:42 ERROR distributedshell.Client: Application failed to complete
successfully

The next step is to examine the output for the application. Distributed-Shell redirects the

output of the individual shell commands run on the cluster nodes into the log files, which are

found either on the individual nodes or aggregated onto HDFS, depending on whether log

aggregation is enabled.

Assuming log aggregation is enabled, the results for each instance of the command can be

found by using the yarn logs command. For the previous uptime example, the following

command can be used to inspect the logs:

$ yarn logs -applicationId application_1432831236474_0001

The abbreviated output follows:

Container: container_1432831236474_0001_01_000001 on n0_45454
===
LogType:AppMaster.stderr
Log Upload Time:Thu May 28 12:41:58 -0400 2015
LogLength:3595
Log Contents:
15/05/28 12:41:52 INFO distributedshell.ApplicationMaster: Initializing
ApplicationMaster
[...]
Container: container_1432831236474_0001_01_000002 on n1_45454
===
LogType:stderr
Log Upload Time:Thu May 28 12:41:59 -0400 2015
LogLength:0
Log Contents:

LogType:stdout
Log Upload Time:Thu May 28 12:41:59 -0400 2015
LogLength:71
Log Contents:
 12:41:56 up 33 days, 19:28, 0 users, load average: 0.08, 0.06, 0.01

Notice that there are two containers. The first container (con..._000001) is the ApplicationMaster

for the job. The second container (con..._000002) is the actual shell script. The output for

the uptime command is located in the second containers stdout after the Log Contents: label.

Using More Containers

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 56

Distributed-Shell can run commands to be executed on any number of containers by way of

the -num_containers argument. For example, to see on which nodes the Distributed-Shell

command was run, the following command can be used:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command

hostname -num_containers 4

If we now examine the results for this job, there will be five containers in the log. The four

command containers (2 through 5) will print the name of the node on which the container was

run.

Distributed-Shell Examples with Shell Arguments

Arguments can be added to the shell command using the -shell_args option. For example, to

do a ls -l in the directory from where the shell command was run, we can use the following

commands:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command ls -
shell_args -l

The resulting output from the log file is as follows:

total 20
-rw-r--r-- 1 yarn hadoop 74 May 28 10:37 container_tokens
-rwx------ 1 yarn hadoop 643 May 28 10:37 default_container_executor_session.sh
-rwx------ 1 yarn hadoop 697 May 28 10:37 default_container_executor.sh
-rwx------ 1 yarn hadoop 1700 May 28 10:37 launch_container.sh
drwx--x--- 2 yarn hadoop 4096 May 28 10:37 tmp

As can be seen, the resulting files are new and not located anywhere in HDFS or the local file

system. When we explore further by giving a pwd command for Distributed-Shell, the

following directory is listed and created on the node that ran the shell command:

/hdfs2/hadoop/yarn/local/usercache/hdfs/appcache/application_1432831236474_0003/container_14328312

36474_0003_01_000002/

Searching for this directory will prove to be problematic because these transient files are used

by YARN to run the Distributed-Shell application and are removed once the application

finishes. You can preserve these files for a specific interval by adding the following lines to

the yarn-site.xmlconfiguration file and restarting YARN:

<property>
 <name>yarn.nodemanager.delete.debug-delay-sec</name>
 <value>100000</value>
</property>

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 57

Choose a delay, in seconds, to preserve these files, and remember that all applications will

create these files. If you are using Ambari, look on the YARN Configs tab under the

Advanced yarn-site options, make the change and restart YARN. (See Chapter 9, “Managing

Hadoop with Apache Ambari,” for more information on Ambari administration.) These files

will be retained on the individual nodes only for the duration of the specified delay.

When debugging or investigating YARN applications, these files—in

particular, launch_container.sh—offer important information about YARN processes.

Distributed-Shell can be used to see what this file contains. Using DistributedShell, the

contents of the launch_container.sh file can be printed with the following command:

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command cat
-shell_args launch_container.sh

This command prints the launch_container.sh file that is created and run by YARN. The

contents of this file are shown in Listing 8.1. The file basically exports some important

YARN variables and then, at the end, “execs” the command (cat launch_container.sh)

directly and sends any output to logs.

Listing 8.1 Distributed-Shell launch_container.sh File

#!/bin/bash

export NM_HTTP_PORT="8042"
export LOCAL_DIRS="/opt/hadoop/yarn/local/usercache/hdfs/appcache/
application_1432816241597_0004,/hdfs1/hadoop/yarn/local/usercache/hdfs/appc
ache/
application_1432816241597_0004,/hdfs2/hadoop/yarn/local/usercache/hdfs/appc
ache/
application_1432816241597_0004"
export JAVA_HOME="/usr/lib/jvm/java-1.7.0-openjdk.x86_64"
export
NM_AUX_SERVICE_mapreduce_shuffle="AAA0+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA=
"
export HADOOP_YARN_HOME="/usr/hdp/current/hadoop-yarn-client"
export HADOOP_TOKEN_FILE_LOCATION="/hdfs2/hadoop/yarn/local/usercache/hdfs/
appcache/application_1432816241597_0004/container_1432816241597_0004_01_000
002/
container_tokens"
export NM_HOST="limulus"
export JVM_PID="$$"
export USER="hdfs"
export PWD="/hdfs2/hadoop/yarn/local/usercache/hdfs/appcache/
application_1432816241597_0004/container_1432816241597_0004_01_000002"
export CONTAINER_ID="container_1432816241597_0004_01_000002"
export NM_PORT="45454"
export HOME="/home/"
export LOGNAME="hdfs"
export HADOOP_CONF_DIR="/etc/hadoop/conf"

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 58

export MALLOC_ARENA_MAX="4"
export LOG_DIRS="/opt/hadoop/yarn/log/application_1432816241597_0004/
container_1432816241597_0004_01_000002,/hdfs1/hadoop/yarn/log/
application_1432816241597_0004/container_1432816241597_0004_01_000002,/hdfs
2/
hadoop/yarn/log/application_1432816241597_0004/
container_1432816241597_0004_01_000002"
exec /bin/bash -c "cat launch_container.sh
1>/hdfs2/hadoop/yarn/log/application_1432816241597_0004/
container_1432816241597_0004_01_000002/stdout 2>/hdfs2/hadoop/yarn/log/
application_1432816241597_0004/container_1432816241597_0004_01_000002/stder
r "
hadoop_shell_errorcode=$?
if [$hadoop_shell_errorcode -ne 0]
then
 exit $hadoop_shell_errorcode
fi

There are more options for the Distributed-Shell that you can test. The real value of the

Distributed-Shell application is its ability to demonstrate how applications are launched

within the Hadoop YARN infrastructure. It is also a good starting point when you are

creating YARN applications.

STRUCTURE OF YARN APPLICATIONS
The structure and operation of a YARN application are covered briefly in this section.

The central YARN ResourceManager runs as a scheduling daemon on a dedicated machine

and acts as the central authority for allocating resources to the various competing applications

in the cluster. The ResourceManager has a central and global view of all cluster resources

and, therefore, can ensure fairness, capacity, and locality are shared across all users.

Depending on the application demand, scheduling priorities, and resource availability, the

ResourceManager dynamically allocates resource containers to applications to run on

particular nodes. A container is a logical bundle of resources (e.g., memory, cores) bound to a

particular cluster node. To enforce and track such assignments, the ResourceManager

interacts with a special system daemon running on each node called the NodeManager.

Communications between the ResourceManager and NodeManagers are heartbeat based for

scalability. NodeManagers are responsible for local monitoring of resource availability, fault

reporting, and container life-cycle management (e.g., starting and killing jobs). The

ResourceManager depends on the NodeManagers for its “global view” of the cluster.

User applications are submitted to the ResourceManager via a public protocol and go through

an admission control phase during which security credentials are validated and various

operational and administrative checks are performed. Those applications that are accepted

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 59

pass to the scheduler and are allowed to run. Once the scheduler has enough resources to

satisfy the request, the application is moved from an accepted state to a running state. Aside

from internal bookkeeping, this process involves allocating a container for the single

ApplicationMaster and spawning it on a node in the cluster. Often called container 0, the

ApplicationMaster does not have any additional resources at this point, but rather must

request additional resources from the ResourceManager.

The ApplicationMaster is the “master” user job that manages all application life-cycle

aspects, including dynamically increasing and decreasing resource consumption (i.e.,

containers), managing the flow of execution (e.g., in case of MapReduce jobs, running

reducers against the output of maps), handling faults and computation skew, and performing

other local optimizations. The ApplicationMaster is designed to run arbitrary user code that

can be written in any programming language, as all communication with the

ResourceManager and NodeManager is encoded using extensible network protocols

YARN makes few assumptions about the ApplicationMaster, although in practice it expects

most jobs will use a higher-level programming framework. By delegating all these functions

to ApplicationMasters, YARN’s architecture gains a great deal of scalability, programming

model flexibility, and improved user agility. For example, upgrading and testing a new

MapReduce framework can be done independently of other running MapReduce frameworks.

Typically, an ApplicationMaster will need to harness the processing power of multiple

servers to complete a job. To achieve this, the ApplicationMaster issues resource requests to

the ResourceManager. The form of these requests includes specification of locality

preferences (e.g., to accommodate HDFS use) and properties of the containers. The

ResourceManager will attempt to satisfy the resource requests coming from each application

according to availability and scheduling policies. When a resource is scheduled on behalf of

an ApplicationMaster, the ResourceManager generates a lease for the resource, which is

acquired by a subsequent ApplicationMaster heartbeat. The ApplicationMaster then works

with the NodeManagers to start the resource. A token-based security mechanism guarantees

its authenticity when the ApplicationMaster presents the container lease to the NodeManager.

In a typical situation, running containers will communicate with the ApplicationMaster

through an application-specific protocol to report status and health information and to receive

framework-specific commands. In this way, YARN provides a basic infrastructure for

monitoring and life-cycle management of containers, while each framework manages

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 60

application-specific semantics independently. This design stands in sharp contrast to the

original Hadoop version 1 design, in which scheduling was designed and integrated around

managing only MapReduce tasks.

Figure 8.1 YARN architecture with two clients (MapReduce and MPI). The darker client (MPI AM2) is running an MPI
application, and the lighter client (MR AM1) is running a MapReduce application. (From Arun C. Murthy, et al., Apache
Hadoop™ YARN, copyright © 2014, p. 45. Reprinted and electronically reproduced by permission of Pearson Education, Inc.,
New York, NY.)

YARN APPLICATION FRAMEWORKS

One of the most exciting aspects of Hadoop version 2 is the capability to run all types of

applications on a Hadoop cluster. In Hadoop version 1, the only processing model available

to users is MapReduce. In Hadoop version 2, MapReduce is separated from the resource

management layer of Hadoop and placed into its own application framework. Indeed, the

growing number of YARN applications offers a high level and multifaceted interface to the

Hadoop data lake.

YARN presents a resource management platform, which provides services such as

scheduling, fault monitoring, data locality, and more to MapReduce and other

frameworks. Figure 8.2 illustrates some of the various frameworks that will run under

YARN. Note that the Hadoop version 1 applications (e.g., Pig and Hive) run under the

MapReduce framework.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 61

Figure 8.2 Example of the Hadoop version 2 ecosystem. Hadoop version 1 supports batch MapReduce applications only.

This section presents a brief survey of emerging open source YARN application frameworks

that are being developed to run under YARN. As of this writing, many YARN frameworks

are under active development and the framework landscape is expected to change rapidly.

Commercial vendors are also taking advantage of the YARN platform. Consult the webpage

for each individual framework for full details of its current stage of development and

deployment.

Distributed-Shell

As described earlier in this chapter, Distributed-Shell is an example application included with

the Hadoop core components that demonstrates how to write applications on top of YARN. It

provides a simple method for running shell commands and scripts in containers in parallel on

a Hadoop YARN cluster.

Hadoop MapReduce

MapReduce was the first YARN framework and drove many of YARN’s requirements. It is

integrated tightly with the rest of the Hadoop ecosystem projects, such as Apache Pig,

Apache Hive, and Apache Oozie.

Apache Tez

One great example of a new YARN framework is Apache Tez. Many Hadoop jobs involve

the execution of a complex directed acyclic graph (DAG) of tasks using separate MapReduce

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 62

stages. Apache Tez generalizes this process and enables these tasks to be spread across stages

so that they can be run as a single, all-encompassing job.

Tez can be used as a MapReduce replacement for projects such as Apache Hive and Apache

Pig. No changes are needed to the Hive or Pig applications.

Apache Giraph

Apache Giraph is an iterative graph processing system built for high scalability. Facebook,

Twitter, and LinkedIn use it to create social graphs of users. Giraph was originally written to

run on standard Hadoop V1 using the MapReduce framework, but that approach proved

inefficient and totally unnatural for various reasons. The native Giraph implementation under

YARN provides the user with an iterative processing model that is not directly available with

MapReduce. Support for YARN has been present in Giraph since its own version 1.0 release.

In addition, using the flexibility of YARN, the Giraph developers plan on implementing their

own web interface to monitor job progress

Hoya: HBase on YARN

The Hoya project creates dynamic and elastic Apache HBase clusters on top of YARN. A

client application creates the persistent configuration files, sets up the HBase cluster XML

files, and then asks YARN to create an ApplicationMaster. YARN copies all files listed in the

client’s application-launch request from HDFS into the local file system of the chosen server,

and then executes the command to start the Hoya ApplicationMaster. Hoya also asks YARN

for the number of containers matching the number of HBase region servers it needs.

Dryad on YARN

Similar to Apache Tez, Microsoft’s Dryad provides a DAG as the abstraction of execution

flow. This framework is ported to run natively on YARN and is fully compatible with its

non-YARN version. The code is written completely in native C++ and C# for worker nodes

and uses a thin layer of Java within the application.

Apache Spark

Spark was initially developed for applications in which keeping data in memory improves

performance, such as iterative algorithms, which are common in machine learning, and

interactive data mining. Spark differs from classic MapReduce in two important ways. First,

Spark holds intermediate results in memory, rather than writing them to disk. Second, Spark

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 63

supports more than just MapReduce functions; that is, it greatly expands the set of possible

analyses that can be executed over HDFS data stores. It also provides APIs in Scala, Java,

and Python.

Since 2013, Spark has been running on production YARN clusters at Yahoo!. The advantage

of porting and running Spark on top of YARN is the common resource management and a

single underlying file system.

Apache Storm

Traditional MapReduce jobs are expected to eventually finish, but Apache Storm

continuously processes messages until it is stopped. This framework is designed to process

unbounded streams of data in real time. It can be used in any programming language. The

basic Storm use-cases include real-time analytics, online machine learning, continuous

computation, distributed RPC (remote procedure calls), ETL (extract, transform, and load),

and more. Storm provides fast performance, is scalable, is fault tolerant, and provides

processing guarantees. It works directly under YARN and takes advantage of the common

data and resource management substrate.

Apache REEF: Retainable Evaluator Execution Framework

YARN’s flexibility sometimes requires significant effort on the part of application

implementers. The steps involved in writing a custom application on YARN include building

your own ApplicationMaster, performing client and container management, and handling

aspects of fault tolerance, execution flow, coordination, and other concerns. The REEF

project by Microsoft recognizes this challenge and factors out several components that are

common to many applications, such as storage management, data caching, fault detection,

and checkpoints. Framework designers can build their applications on top of REEF more

easily than they can build those same applications directly on YARN, and can reuse these

common services/libraries. REEF’s design makes it suitable for both MapReduce and DAG-

like executions as well as iterative and interactive computations.

Hamster: Hadoop and MPI on the Same Cluster

The Message Passing Interface (MPI) is widely used in high-performance computing (HPC).

MPI is primarily a set of optimized message-passing library calls for C, C++, and Fortran that

operate over popular server interconnects such as Ethernet and InfiniBand. Because users

have full control over their YARN containers, there is no reason why MPI applications

cannot run within a Hadoop cluster. The Hamster effort is a work-in-progress that provides a

good discussion of the issues involved in mapping MPI to a YARN cluster.

Big Data Analytics[18CS72]

SUNIL G L, Dept. CSE, SVIT Page 64

Apache Flink: Scalable Batch and Stream Data Processing

Apache Flink is a platform for efficient, distributed, general-purpose data processing. It

features powerful programming abstractions in Java and Scala, a high-performance run time,

and automatic program optimization. It also offers native support for iterations, incremental

iterations, and programs consisting of large DAGs of operations.

Flink is primarily a stream-processing framework that can look like a batch-processing

environment. The immediate benefit from this approach is the ability to use the same

algorithms for both streaming and batch modes (exactly as is done in Apache Spark).

However, Flink can provide low-latency similar to that found in Apache Storm, but which is

not available in Apache Spark.

In addition, Flink has its own memory management system, separate from Java’s garbage

collector. By managing memory explicitly, Flink almost eliminates the memory spikes often

seen on Spark clusters.

Apache Slider: Dynamic Application Management

Apache Slider (incubating) is a YARN application to deploy existing distributed applications

on YARN, monitor them, and make them larger or smaller as desired in real time.

Applications can be stopped and then started; the distribution of the deployed application

across the YARN cluster is persistent and allows for best-effort placement close to the

previous locations. Applications that remember the previous placement of data (such as

HBase) can exhibit fast startup times by capitalizing on this feature.

YARN monitors the health of “YARN containers” that are hosting parts of the deployed

applications. If a container fails, the Slider manager is notified. Slider then requests a new

replacement container from the YARN ResourceManager. Some of Slider’s other features

include user creation of on-demand applications, the ability to stop and restart applications as

needed (preemption), and the ability to expand or reduce the number of application containers

as needed. The Slider tool is a Java command-line application.

