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1 Big Data Analytics (18CS72) 

Module -2 

Introduction to Hadoop 

2.1 Big Data Programming Model 

A programming model is centralized computing of data in which the data is transferred from 

multiple distributed data sources to a central server. Analyzing, reporting, visualizing, business-

intelligence tasks compute centrally. Data are inputs to the central server. 

Another programming model is distributed computing that uses the databases at multiple 

computing nodes with data sharing between the nodes during computation. Distributed 

computing in this model requires the cooperation (sharing) between the DBs in a transparent 

manner. Transparent means that each user within the system may access all the data within all 

databases as if they were a single database. A second requirement is location independence. 

Analysis results should be independent of geographical locations. The access of one computing 

node to other nodes may fail due to a single link failure. 

Distributed pieces of codes as well as the data at the computing nodes Transparency between 

data nodes at computing nodes do not fulfil for Big Data when distributed computing takes place 

using data sharing between local and remote. Following are the reasons for this: 

 Distributed data storage systems do not use the concept of joins. 

 Data need to be fault-tolerant and data stores should take into account the possibilities of 

network failure. When data need to be partitioned into data blocks and written at one set of 

nodes, then those blocks need replication at multiple nodes. This takes care of possibilities of 

network faults. When a network fault occurs, then replicated node makes the data available. 

Big Data follows a theorem known as the CAP theorem. The CAP states that out of three 

properties (consistency, availability and partitions), two must at least be present for applications, 

services and processes. 

i. Big Data Store Model 

A model for Big Data store is as follows: 

Data store in file system consisting of data blocks (physical division of data). The data blocks 

are distributed across multiple nodes. Data nodes are at the racks of a cluster. Racks are scalable. 
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2 Big Data Analytics (18CS72) 

A Rack has multiple data nodes (data servers), and each cluster is arranged in a number of racks. 

Data Store model of files in data nodes in racks in the clusters Hadoop system uses the data store 

model in which storage is at clusters, racks, data nodes and data blocks. Data blocks replicate at 

the DataNodes such that a failure of link leads to access of the data block from the other nodes 

replicated at the same or other racks. 

ii. Big Data Programming Model 

Big Data programming model is that application in which application jobs and tasks (or sub-

tasks) is scheduled on the same servers which store the data for processing. 

2.2 Hadoop and its echo system 

Hadoop is a computing environment in which input data stores, processes and stores the results. 

The environment consists of clusters which distribute at the cloud or set of servers. Each cluster 

consists of a string of data files constituting data blocks. The toy named Hadoop consisted of a 

stuffed elephant. The Hadoop system cluster stuffs files in data blocks. The complete system 

consists of a scalable distributed set of clusters. 

Infrastructure consists of cloud for clusters. A cluster consists of sets of computers or PCs. The 

Hadoop platform provides a low cost Big Data platform, which is open source and uses cloud 

services. Tera Bytes of data processing takes just few minutes. Hadoop enables distributed 

processing of large datasets (above 10 million bytes) across clusters of computers using a 

programming model called MapReduce. The system characteristics are scalable, self-

manageable, self-healing and distributed file system. 

Scalable means can be scaled up (enhanced) by adding storage and processing units as per the 

requirements. Self-manageable means creation of storage and processing resources which are 

used, scheduled and reduced or increased with the help of the system itself. Self-healing means 

that in case of faults, they are taken care of by the system itself. Self-healing enables functioning 

and resources availability. Software detect and handle failures at the task level. Software enable 

the service or task execution even in case of communication or node failure. 
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3 Big Data Analytics (18CS72) 

 Hadoop Core Components 

Figure 2.1 Core components of Hadoop 

The Hadoop core components of the framework are: 

Hadoop Common - The common module contains the libraries and utilities that are required 

by the other modules of Hadoop. For example, Hadoop common provides various components 

and interfaces for distributed file system and general input/output. This includes serialization, 

Java RPC (Remote Procedure Call) and file-based data structures. 

Hadoop Distributed File System (HDFS) - A Java-based distributed file system which can 

store all kinds of data on the disks at the clusters. 

MapReduce vl - Software programming model in Hadoop 1 using Mapper and Reducer. The 

vl processes large sets of data in parallel and in batches. 

YARN - Software for managing resources for computing. The user application tasks or sub-

tasks run in parallel at the Hadoop, uses scheduling and handles the requests for the resources 

in distributed running of the tasks. 

MapReduce v2 - Hadoop 2 YARN-based system for parallel processing of large datasets and 

distributed processing of the application tasks. 

2.2.2 Features of Hadoop 

Hadoop features are as follows: 

1. Fault-efficient scalable, flexible and modular design which uses simple and modular 

programming model. The system provides servers at high scalability. The system is scalable by 

adding new nodes to handle larger data. Hadoop proves very helpful in storing, managing, 
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4 Big Data Analytics (18CS72) 

processing and analyzing Big Data.  

2. Robust design of HDFS: Execution of Big Data applications continue even when an 

individual server or cluster fails. This is because of Hadoop provisions for backup (due to 

replications at least three times for each data block) and a data recovery mechanism. HDFS thus 

has high reliability. 

3. Store and process Big Data: Processes Big Data of 3V characteristics. 

4. Distributed clusters computing model with data locality: Processes Big Data at high speed 

as the application tasks and sub-tasks submit to the DataNodes. One can achieve more 

computing power by increasing the number of computing nodes. The processing splits across 

multiple DataNodes (servers), and thus fast processing and aggregated results. 

5. Hardware fault-tolerant: A fault does not affect data and application processing. If a node 

goes down, the other nodes take care of the residue. This is due to multiple copies of all data 

blocks which replicate automatically. Default is three copies of data blocks. 

6. Open-source framework: Open source access and cloud services enable large data store. 

Hadoop uses a cluster of multiple inexpensive servers or the cloud. 

7. Java and Linux based: Hadoop uses Java interfaces. Hadoop base is Linux but has its own 

set of shell commands support. 

2.2.3.  Hadoop Eco system Components 

The four layers in Figure 2.2 are as follows: 

(i)    Distributed storage layer 

(ii) Resource-manager layer for job or application sub-tasks scheduling and execution 

(iii) Processing-framework layer, consisting of Mapper and Reducer for the MapReduce  

process-flow. 

(iv) APis at application support layer (applications such as Hive and Pig). The codes 

communicate and run using MapReduce or YARN at processing framework layer. Reducer 

output communicate to APis (Figure 2.2). 
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5 Big Data Analytics (18CS72) 

 

Figure 2.2 Hadoop main components and ecosystem components 

AVRO enables data serialization between the layers. Zookeeper enables coordination among 

layer components. 

The holistic view of Hadoop architecture provides an idea of implementation of Hadoop 

components of the ecosystem. Client hosts run applications using Hadoop ecosystem projects, 

such as Pig, Hive and Mahout. 

2.3 HADOOP DISTRIBUTED FILE SYSTEM 

HDFS is a core component of Hadoop. HDFS is designed to run on a cluster of computers and 

servers at cloud-based utility services. 

HDFS stores Big Data which may range from GBs (1 GB= 230 B) to PBs (1 PB= 

1015 B, nearly the 250 B). HDFS stores the data in a distributed manner in order to compute 

fast. The distributed data store in HDFS stores data in any format regardless of schema. 

2.3.1 HDFS Storage 

Hadoop data store concept implies storing the data at a number of dusters. Each cluster has a 

number of data stores, called racks. Each rack stores a number of DataNodes. Each DataNode 

has a large number of data blocks. The racks distribute across a cluster. The nodes have 

processing and storage capabilities. The nodes have the data in data blocks to run the application 

tasks. The data blocks replicate by default at least on three DataNodes in same or remote nodes. 
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6 Big Data Analytics (18CS72) 

Data at the stores enable running the distributed applications including analytics, data mining, 

OLAP using the clusters. A file, containing the data divides into data blocks. A data block 

default size is 64 MBs 

Hadoop HDFS features are as follows 

i. Create, append, delete, rename and attribute modification functions 

ii. Content of individual file cannot be modified or replaced but appended with new data at 

the end of the file 

iii. Write once but read many times during usages and processing 

iv. Average file size can be more than 500 MB. 

 

 

Figure 2.3 A Hadoop cluster example, 

 

Consider a data storage for University students. Each student data, stuData which is in a file of 

size less than 64 MB (1 MB= 220 B). A data block stores the full file data for a student of 

stuData_idN, whereN = 1 to 500. 

i. How the files of each student will be distributed at a Hadoop cluster? How many student 

data can be stored at one cluster? Assume that each rack has two DataNodes for processing each 
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7 Big Data Analytics (18CS72) 

of 64 GB (1 GB= 230 B) memory. Assume that cluster consists of 120 racks, and thus 240 

DataNodes. 

ii. What is the total memory capacity of the cluster in TB ((1 TB= 240 B) and DataNodes 

in each rack? 

iii. Show the distributed blocks for students with ID= 96 and 1025. Assume default 

replication in the DataNodes = 3. 

iv. What shall be the changes when a stuData file sizes 128 MB? 

SOLUTION 

i. Data block default size is 64 MB. Each students file size is less than 64MB. Therefore, 

for each student file one data block suffices. A data block is in a DataNode. Assume, for 

simplicity, each rack has two nodes each of memory capacity = 64 GB. Each node can thus store 

64 GB/64MB = 1024 data blocks = 1024 student files. Each rack can thus store 2 x 64 GB/64MB 

= 2048 data blocks = 2048 student files. Each data  block default replicates three times in the 

DataNodes. Therefore, the number of students whose data can be stored in the cluster = number 

of racks multiplied by number of files divided by 3 = 120 x 2048/3 = 81920. Therefore, the 

maximum number of 81920 stuData_IDN files can be distributed per cluster, with N = 1 to 

81920. 

ii. Total memory capacity of the cluster = 120 x 128 MB = 15360 GB = 15 TB. Total 

memory capacity of each DataNode in each rack= 1024 x 64 MB= 64 GB. 

iii. Figure 2.3 shows a Hadoop cluster example, and the replication of data blocks in racks 

for two students of IDs 96 and 1025. Each stuData file stores at two data blocks, of capacity 

64 MB each. 

iv. Changes will be that each node will have half the number of data blocks. 

2.3.1.1 Hadoop Physical organization 

Figure 2.4 shows the client, master NameNode, primary and secondary MasterNodes and slave 

nodes in the Hadoop physical architecture. Clients as the users run the application with the help 

of Hadoop ecosystem projects. For example, Hive, Mahout and Pig are the ecosystem's projects. 

They are not required to be present at the Hadoop cluster. 
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8 Big Data Analytics (18CS72) 

 

 

Figure 2.4 The client, master NameNode, MasterNodes and slave  nodes 

A single MasterNode provides HDFS, MapReduce and Hbase using threads in small to medium 

sized clusters. When the cluster size is large, multiple servers are used, such as to balance the 

load. The secondary NameNode provides NameNode management services and Zookeeper is 

used by HBase for metadata storage. 

The MasterNode fundamentally plays the role of a coordinator. The MasterNode receives client 

connections, maintains the description of the global file system namespace, and the allocation 

of file blocks. It also monitors the state of the system in order to detect any failure. The Masters 

consists of three components NameNode, Secondary NameNode and JobTracker. The 

NameNode stores all the file system related information such as: 

 The file section is stored in which part of the cluster 

 Last access time for the files 

 User permissions like which user has access to the file. 

Secondary NameNode is an alternate for NameNode. Secondary node keeps a copy of 
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9 Big Data Analytics (18CS72) 

NameNode meta data. Thus, stored meta data can be rebuilt easily, in case ofNameNode failure. 

TheJobTracker coordinates the parallel processing of data. 

2.3.1.1 Hadoop 2 

 Single Name   Node failure in Hadoop 1 is an operational limitation.  

 Scaling up was restricted to scale beyond a few thousands of DataNodes and number 
of Clusters. 

 Hadoop 2 provides the multiple NameNodes which enables higher resources 
availability 

2.3.1.2 HDFS commands 

 

 

2.4 MAPREDUCE FRAMEWORK AND PROGRAMMING MODEL 

Mapper means software for doing the assigned task after organizing the data blocks imported 

using the keys. A key specifies in a command line of Mapper. The command maps the key to 

the data, which an application uses. 

Reducer means software for reducing the mapped data by using the aggregation, query or user-

specified function. The reducer provides a concise cohesive response for the application. 

Aggregation function means the function that groups the values of multiple rows together to 
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result a single value of more significant meaning or measurement. For example, function such 

as count, sum, maximum, minimum, deviation and standard deviation. 

Querying function means a function that finds the desired values. For example, function for 

finding a best student of a class who has shown the best performance in examination. 

MapReduce allows writing applications to process reliably the huge amounts of data, in 

parallel, on large clusters of servers. The cluster size does not limit as such to process in parallel. 

The parallel programs of MapReduce are useful for performing large scale data analysis using 

multiple machines in the cluster. 

Features o fMapReduce framework are as follows: 

 Provides automatic parallelization and distribution of computation based on several 

processors 

 Processes data stored on distributed clusters of DataNodes and racks 

 Allows processing large amount of data in parallel 

 Provides scalability for usages of large number of servers 

 Provides Map Reduce batch-oriented programming model in Hadoop version 1 

 Provides additional processing modes in Hadoop 2 YARN-based system and enables 

required parallel processing. For example, for queries, graph databases, streaming 

data, messages, real-time OLAP and ad hoc analytics with Big Data 3V 

characteristics. 

2.5 HADOOP YARN 

 YARN is a resource a management platform. It manages the computer resources.  

 YARN manages the schedules for running the sub tasks. Each sub tasks uses the 

resources in the allotted interval time.  

 YARN separates the resources management and processing components.  

 It stands for YET ANOTHER RESOURCE NEGOTIATOR , it manages and allocates 

resources for the application sub tasks and submit the resources for them in the Hadoop 

system. 
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11 Big Data Analytics (18CS72) 

 

Hadoop 2 Execution Model 

 

Figure 2.5 YARN based Execution Model 

The figure shows the YARN components-Client, Resource Manager (RM), Node Manager 

(NM), Application Master (AM) and Containers. 

Figure 2.5 also illustrates YARN components namely, Client, Resource Manager (RM), Node 

Manager (RM), Application Master (AM) and Containers. 

List of actions of YARN resource allocation and scheduling functions is as follows: 

A MasterNode has two components: (i) Job History Server and (ii) Resource Manager(RM). 

A Client Node submits the request of an application to the RM. The RM is the master. One RM 

exists per cluster. The RM keeps information of all the slave NMs. Information is about the 

location (Rack Awareness) and the number of resources (data blocks and servers) they have. 

The RM also renders the Resource Scheduler service that decides how to assign the resources. 

It, therefore, performs resource management as well as scheduling. 

Multiple NMs are at a cluster. An NM creates an AM instance (AMI) and starts up. The AMI 

initializes itself and registers with the RM. Multiple AMis can be created in an AM. 

The AMI performs role of an Application Manager (ApplM), that estimates the resources 

requirement for running an application program or sub- task. The ApplMs send their requests 
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for the necessary resources to the RM. Each NM includes several containers for uses by the 

subtasks of the application. 

NM is a slave of the infrastructure. It signals whenever it initializes. All active NMs send the 

controlling signal periodically to the RM signaling their presence. 

2.6 HADOOP ECOSYSTEM TOOLS 

ZooKeeper- 
Coordination 
service 

 
Provisions high-performance coordination service for distributed 
running of applications and tasks  

Avro-Data 
serialization 
and transfer 
utility 

 
Provisions data serialization during data transfer between application 
and processing layers  

 
Oozie Provides a way to package and bundles multiple coordinator and 

workflow jobs and manage the lifecycle of those jobs  

Sqoop 
(SQL-to- 
Hadoop)-A 
data-transfer 
software 

 

Provisions for data-transfer between data stores such as relational DBs 
and Hadoop  

Flume - Large 
data transfer 
utility 

Provisions for reliable data transfer and provides for recovery in case of 
failure. Transfers large amount of data in applications, such as related to 
social-media messages  

Ambari-A 
web-based tool 

Provisions, monitors, manages, and viewing of functioning of the 
cluster, MapReduce, Hive and Pig APis  

Chukwa-A 
data collection 
system 

 
Provisions and manages data collection system for large and distributed 
systems 

HBase-A 
structured 
data store 
using database 

 
Provisions a scalable and structured database for large tables (Section 
2.6.3) 

Cassandra - A 
database 

Provisions scalable and fault-tolerant database for multiple masters 
(Section 3.7) 
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Hive -A data 
warehouse 
system 

Provisions data aggregation, data-summarization, data warehouse 
infrastructure, ad hoc (unstructured) querying and SQL-like scripting 
language for query processing using HiveQL (Sections 2.6.4, 4.4 and 4.5) 

Pig-A high- 
level dataflow 
language 

 
Provisions dataflow (DF) functionality and the execution framework for 
parallel computations 

Mahout-A Provisions scalable machine learning and library functions for data 
mining and analytics 
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Module 2 
1. Essential Hadoop Tools 

In This Chapter: 

 The Pig scripting tool is introduced as a way to quickly examine data both locally and on a Hadoop 
cluster. 

 The Hive SQL-like query tool is explained using two examples. 

 The Sqoop RDBMS tool is used to import and export data from MySQL to/from HDFS. 

 The Flume streaming data transport utility is configured to capture weblog data into HDFS. 

 The Oozie workflow manager is used to run basic and complex Hadoop workflows. 

 The distributed HBase database is used to store and access data on a Hadoop cluster. 

USING APACHE PIG 
Apache Pig is a high-level language that enables programmers to write complex MapReduce 

transformations using a simple scripting language. Pig Latin (the actual language) defines a 

set of transformations on a data set such as aggregate, join, and sort.  

Apache Pig has several usage modes.  

 The first is a local mode in which all processing is done on the local machine.  

 The non-local (cluster) modes are MapReduce and Tez. These modes execute the job 

on the cluster using either the MapReduce engine or the optimized Tez engine.  

There are also interactive and batch modes available; they enable Pig applications to be 

developed locally in interactive modes, using small amounts of data, and then run at scale on 

the cluster in a production mode. The modes are summarized in Table 7.1.  

 
 

Table 7.1 Apache Pig Usage Modes 

Pig Example Walk-Through 

In this simple example, Pig is used   The following example assumes the user is hdfs, but any 
valid user with access to HDFS can run the example. 
To begin the example, copy the passwd file to a working directory for local Pig operation: 
$ cp /etc/passwd . 

Next, copy the data file into HDFS for Hadoop MapReduce operation: 

$ hdfs dfs -put passwd passwd 

You can confirm the file is in HDFS by entering the following command: 
hdfs dfs -ls passwd 

-rw-r--r--   2 hdfs hdfs       2526 2015-03-17 11:08 passwd 

In the following example of local Pig operation, all processing is done on the local machine 
(Hadoop is not used). First, the interactive command line is started: 
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$ pig -x local 

If Pig starts correctly, you will see a grunt> prompt.  Next, enter the following commands to 
load the passwd file and then grab the user name and dump it to the terminal. Note that Pig 
commands must end with a semicolon (;). 
grunt> A = load 'passwd' using PigStorage(':'); 
grunt> B = foreach A generate $0 as id; 
grunt> dump B; 

The processing will start and a list of user names will be printed to the screen. To exit the 
interactive session, enter the command quit. 
$ grunt> quit 

To use Hadoop MapReduce, start Pig as follows (or just enter pig): 
$ pig -x mapreduce 

The same sequence of commands can be entered at the grunt> prompt. You may wish to 
change the $0 argument to pull out other items in the passwd file. Also, because we are 
running this application under Hadoop, make sure the file is placed in HDFS. 
If you are using the Hortonworks HDP distribution with tez installed, the tez engine can be 
used as follows: 
$ pig -x tez 

Pig can also be run from a script. This script, which is repeated here, is designed to do the 
same things as the interactive version: 
/* id.pig */ 
A = load 'passwd' using PigStorage(':');  -- load the passwd file 
B = foreach A generate $0 as id;  -- extract the user IDs 
dump B; 
store B into 'id.out'; -- write the results to a directory name id.out 

Comments are delineated by /* */ and -- at the end of a line. First, ensure that the id.out  
directory is not in your local directory, and then start Pig with the script on the command line: 
$ /bin/rm -r id.out/ 
$ pig -x local id.pig 

If the script worked correctly, you should see at least one data file with the results and a zero-
length file with the name _SUCCESS. To run the MapReduce version, use the same 
procedure; the only difference is that now all reading and writing takes place in HDFS. 
$ hdfs dfs -rm -r id.out 
$ pig id.pig 

USING APACHE HIVE 
Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data 
summarization, ad hoc queries, and the analysis of large data sets using a SQL-like language 
called HiveQL. Hive offers the following features: 

 Tools to enable easy data extraction, transformation, and loading (ETL) 
 A mechanism to impose structure on a variety of data formats 
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 Access to files stored either directly in HDFS or in other data storage systems such as 

HBase 

 Query execution via MapReduce and Tez (optimized MapReduce) 

Hive Example Walk-Through 
To start Hive, simply enter the hive command. If Hive starts correctly, you should get a hive> 
prompt. 
$ hive 
(some messages may show up here) 
hive> 

As a simple test, create and drop a table. Note that Hive commands must end with a 
semicolon (;). 
hive> CREATE TABLE pokes (foo INT, bar STRING); 
OK 
Time taken: 1.705 seconds 
hive> SHOW TABLES; 
OK 
pokes 
Time taken: 0.174 seconds, Fetched: 1 row(s) 
hive> DROP TABLE pokes; 
OK 
Time taken: 4.038 seconds 

A more detailed example can be developed using a web server log file to summarize message 

types. First, create a table using the following command: 

hive> CREATE TABLE logs(t1 string, t2 string, t3 string, t4 string, t5 string, t6 string, t7 string) ROW 
FORMAT DELIMITED FIELDS TERMINATED BY ' '; 
OK 
Time taken: 0.129 seconds 

Next, load the data—in this case, from the sample.log file. Note that the file is found in the 

local directory and not in HDFS. 

hive> LOAD DATA LOCAL INPATH 'sample.log' OVERWRITE INTO TABLE logs; 
Loading data to table default.logs 
Table default.logs stats: [numFiles=1, numRows=0, totalSize=99271, rawDataSize=0] 
OK 
Time taken: 0.953 seconds 

Finally, apply the select step to the file. Note that this invokes a Hadoop MapReduce 

operation. The results appear at the end of the output (e.g., totals for the message 

types DEBUG, ERROR, and so on). 

hive> SELECT t4 AS sev, COUNT(*) AS cnt FROM logs WHERE t4 LIKE '[%' GROUP BY t4; 
Query ID = hdfs_20150327130000_d1e1a265-a5d7-4ed8-b785-2c6569791368 
Total jobs = 1 
Launching Job 1 out of 1 
Number of reduce tasks not specified. Estimated from input data size: 1 
In order to change the average load for a reducer (in bytes): 
  set hive.exec.reducers.bytes.per.reducer=<number> 
In order to limit the maximum number of reducers: 
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  set hive.exec.reducers.max=<number> 
In order to set a constant number of reducers: 
  set mapreduce.job.reduces=<number> 
Starting Job = job_1427397392757_0001, Tracking URL = http://norbert:8088/proxy/ 
application_1427397392757_0001/ 
Kill Command = /opt/hadoop-2.6.0/bin/hadoop job  -kill job_1427397392757_0001 
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 
2015-03-27 13:00:17,399 Stage-1 map = 0%,  reduce = 0% 
2015-03-27 13:00:26,100 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.14 sec 
2015-03-27 13:00:34,979 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.07 sec 
MapReduce Total cumulative CPU time: 4 seconds 70 msec 
Ended Job = job_1427397392757_0001 
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.07 sec   HDFS Read: 106384 
HDFS Write: 63 SUCCESS 
Total MapReduce CPU Time Spent: 4 seconds 70 msec 
OK 
[DEBUG] 434 
[ERROR] 3 
[FATAL] 1 
[INFO]  96 
[TRACE] 816 
[WARN]  4 
Time taken: 32.624 seconds, Fetched: 6 row(s) 

To exit Hive, simply type exit; 
hive> exit; 

A More Advanced Hive Example 

In this example, 100,000 records will be transformed from userid, movieid, rating, unixtime  
to userid, movieid, rating, and weekday using Apache Hive and a Python program (i.e., the 
UNIX time notation will be transformed to the day of the week). The first step is to download 
and extract the data: 
$ wget http://files.grouplens.org/datasets/movielens/ml-100k.zip 
$ unzip ml-100k.zip 
$ cd ml-100k 

Before we use Hive, we will create a short Python program called weekday_mapper.py with 
following contents: 
import sys 
import datetime 
 
for line in sys.stdin: 
  line = line.strip() 
  userid, movieid, rating, unixtime = line.split('\t') 
  weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() 
  print '\t'.join([userid, movieid, rating, str(weekday)])LOAD DATA LOCAL INPATH './u.data' 
OVERWRITE INTO TABLE u_data; 

Next, start Hive and create the data table (u_data) by entering the following at the hive> 

prompt: 

CREATE TABLE u_data ( 
  userid INT, 
  movieid INT, 
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  rating INT, 
  unixtime STRING) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS TEXTFILE; 

Load the movie data into the table with the following command: 
hive> LOAD DATA LOCAL INPATH './u.data' OVERWRITE INTO TABLE u_data; 

The number of rows in the table can be reported by entering the following command: 
hive > SELECT COUNT(*) FROM u_data; 

This command will start a single MapReduce job and should finish with the following lines: 

... 
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.26 sec   HDFS Read: 1979380 
HDFS Write: 7 SUCCESS 
Total MapReduce CPU Time Spent: 2 seconds 260 msec 
OK 
100000 
Time taken: 28.366 seconds, Fetched: 1 row(s) 
Now that the table data are loaded, use the following command to make the new table 

(u_data_new): 

hive> CREATE TABLE u_data_new ( 
  userid INT, 
  movieid INT, 
  rating INT, 
  weekday INT) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t'; 
The next command adds the weekday_mapper.py to Hive resources: 

hive> add FILE weekday_mapper.py; 

Once weekday_mapper.py is successfully loaded, we can enter the transformation query: 

hive> INSERT OVERWRITE TABLE u_data_new 
SELECT 
  TRANSFORM (userid, movieid, rating, unixtime) 
  USING 'python weekday_mapper.py' 
  AS (userid, movieid, rating, weekday) 
FROM u_data; 

If the transformation was successful, the following final portion of the output should be 
displayed: 
... 
Table default.u_data_new stats: [numFiles=1, numRows=100000, totalSize=1179173, 
rawDataSize=1079173] 
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 3.44 sec   HDFS Read: 1979380 HDFS Write: 
1179256 SUCCESS 
Total MapReduce CPU Time Spent: 3 seconds 440 msec 
OK 
Time taken: 24.06 seconds 
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The final query will sort and group the reviews by weekday: 
hive> SELECT weekday, COUNT(*) FROM u_data_new GROUP BY weekday; 

Final output for the review counts by weekday should look like the following: 
... 
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.39 sec   HDFS Read: 1179386 
HDFS Write: 56 SUCCESS 
Total MapReduce CPU Time Spent: 2 seconds 390 msec 
OK 
1        13278 
2        14816 
3        15426 
4        13774 
5        17964 
6        12318 
7        12424 
Time taken: 22.645 seconds, Fetched: 7 row(s) 

As shown previously, you can remove the tables used in this example with the DROP 
TABLE command. In this case, we are also using the -e command-line option. Note that 
queries can be loaded from files using the -f option as well. 
$ hive -e 'drop table u_data_new' 
$ hive -e 'drop table u_data' 

USING APACHE SQOOP TO ACQUIRE RELATIONAL DATA 

Sqoop is a tool designed to transfer data between Hadoop and relational databases. You can 

use Sqoop to import data from a relational database management system (RDBMS) into the 

Hadoop Distributed File System (HDFS), transform the data in Hadoop, and then export the 

data back into an RDBMS. 

Sqoop can be used with any Java Database Connectivity (JDBC)–compliant database and has 

been tested on Microsoft SQL Server, PostgresSQL, MySQL, and Oracle.  

Apache Sqoop Import and Export Methods 

Figure 7.1 describes the Sqoop data import (to HDFS) process. The data import is done in 

two steps. In the first step, shown in the figure, Sqoop examines the database to gather the 

necessary metadata for the data to be imported. The second step is a map-only (no reduce 

step) Hadoop job that Sqoop submits to the cluster. This job does the actual data transfer 

using the metadata captured in the previous step. Note that each node doing the import must 

have access to the database. 
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Figure 7.1 Two-step Apache Sqoop data import method (Adapted from Apache Sqoop Documentation) 

The imported data are saved in an HDFS directory. Sqoop will use the database name for the 

directory, or the user can specify any alternative directory where the files should be 

populated. By default, these files contain comma-delimited fields, with new lines separating 

different records. You can easily override the format in which data are copied over by 

explicitly specifying the field separator and record terminator characters. Once placed in 

HDFS, the data are ready for processing. 

Data export from the cluster works in a similar fashion. The export is done in two steps, as 

shown in Figure 7.2. As in the import process, the first step is to examine the database for 

metadata. The export step again uses a map-only Hadoop job to write the data to the database. 

Sqoop divides the input data set into splits, then uses individual map tasks to push the splits 

to the database. Again, this process assumes the map tasks have access to the database. 
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Figure 7.2 Two-step Sqoop data export method (Adapted from Apache Sqoop Documentation) 

Apache Sqoop Version Changes 

Sqoop Version 1 uses specialized connectors to access external systems. These connectors 

are often optimized for various RDBMSs or for systems that do not support JDBC. 

Connectors are plug-in components based on Sqoop’s extension framework and can be added 

to any existing Sqoop installation. Once a connector is installed, Sqoop can use it to 

efficiently transfer data between Hadoop and the external store supported by the connector. 

By default, Sqoop version 1 includes connectors for popular databases such as MySQL, 

PostgreSQL, Oracle, SQL Server, and DB2. It also supports direct transfer to and from the 

RDBMS to HBase or Hive. 

In contrast, to streamline the Sqoop input methods, Sqoop version 2 no longer supports 

specialized connectors or direct import into HBase or Hive. All imports and exports are done 

through the JDBC interface. Table 7.2 summarizes the changes from version 1 to version 2. 

Due to these changes, any new development should be done with Sqoop version 2. 

 

Table 7.2 Apache Sqoop Version Comparison 

Sqoop Example Walk-Through 

The following simple example illustrates use of Sqoop 

Step 1: Load Sample MySQL Database 

$ wget http://downloads.mysql.com/docs/world_innodb.sql.gz 
$ gunzip world_innodb.sql.gz 

Next, log into MySQL (assumes you have privileges to create a database) and import the 

desired database by following these steps: 
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   $ mysql -u root -p 
   mysql> CREATE DATABASE world; 
   mysql> USE world; 
   mysql> SOURCE world_innodb.sql; 
   mysql> SHOW TABLES; 
   +-----------------+ 
   | Tables_in_world | 
   +-----------------+ 
   | City            | 
   | Country         | 
   | CountryLanguage | 
   +-----------------+ 
   3 rows in set (0.01 sec) 

The following MySQL command will let you see the table details. 

Step 2: Add Sqoop User Permissions for the Local Machine and Cluster 

In MySQL, add the following privileges for user sqoop to MySQL. Note that you must use 

both the local host name and the cluster subnet for Sqoop to work properly. Also, for the 

purposes of this example, the sqoop password is sqoop. 

mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'limulus' IDENTIFIED BY 'sqoop'; 
mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'10.0.0.%' IDENTIFIED BY 'sqoop'; 
mysql> quit 

Next, log in as sqoop to test the permissions: 

$ mysql -u sqoop -p 
   mysql> USE world; 
   mysql> SHOW TABLES; 
   +-----------------+ 
   | Tables_in_world | 
   +-----------------+ 
   | City            | 
   | Country         | 
   | CountryLanguage | 
   +-----------------+ 
   3 rows in set (0.01 sec) 
 
   mysql> quit 

Step 3: Import Data Using Sqoop 

As a test, we can use Sqoop to list databases in MySQL. The results appear after the warnings 

at the end of the output. Note the use of local host name (limulus) in the JDBC statement. 

$ sqoop list-databases --connect jdbc:mysql://limulus/world --username sqoop --password sqoop 
   Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail. 
   Please set $ACCUMULO_HOME to the root of your Accumulo installation. 
   14/08/18 14:38:55 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471 
   14/08/18 14:38:55 WARN tool.BaseSqoopTool: Setting your password on the 
command-line is insecure. Consider using -P instead. 
   14/08/18 14:38:55 INFO manager.MySQLManager: Preparing to use a MySQL streaming 
resultset. 
   information_schema 
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   test 
   world 

In a similar fashion, you can use Sqoop to connect to MySQL and list the tables in the world 

database: 

  sqoop list-tables --connect jdbc:mysql://limulus/world --username sqoop --password sqoop 
   ... 
   14/08/18 14:39:43 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4.2.1.2.1-471 
   14/08/18 14:39:43 WARN tool.BaseSqoopTool: Setting your password on the 
command-line is insecure. Consider using -P instead. 
   14/08/18 14:39:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming 
resultset. 
   City 
   Country 
   CountryLanguage 

To import data, we need to make a directory in HDFS: 

$ hdfs dfs -mkdir sqoop-mysql-import 

The following command imports the Country table into HDFS. The option -table signifies the 

table to import, --target-dir is the directory created previously, and -m 1 tells Sqoop to use 

one map task to import the data. 

$ sqoop import --connect jdbc:mysql://limulus/world  --username sqoop --password sqoop --table 
Country  -m 1 --target-dir /user/hdfs/sqoop-mysql-import/country 
   ... 
   14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Transferred 30.752 KB in 
12.7348 seconds 
   (2.4148 KB/sec) 
   14/08/18 16:47:15 INFO mapreduce.ImportJobBase: Retrieved 239 records. 

The import can be confirmed by examining HDFS: 

$ hdfs dfs -ls sqoop-mysql-import/country 
   Found 2 items 
   -rw-r--r--   2 hdfs hdfs          0 2014-08-18 16:47 sqoop-mysql-import/ 
world/_SUCCESS 
   -rw-r--r--   2 hdfs hdfs      31490 2014-08-18 16:47 sqoop-mysql-import/world/ 
part-m-00000 

The file can be viewed using the hdfs dfs -cat command: 

$ hdfs dfs -cat sqoop-mysql-import/country/part-m-00000 
   ABW,Aruba,North America,Caribbean,193.0,null,103000,78.4,828.0,793.0,Aruba, 
Nonmetropolitan 
   Territory of The Netherlands,Beatrix,129,AW 
   ... 
   ZWE,Zimbabwe,Africa,Eastern Africa,390757.0,1980,11669000,37.8,5951.0,8670.0, 
Zimbabwe, 
   Republic,Robert G. Mugabe,4068,ZW 

To make the Sqoop command more convenient, you can create an options file and use it on the 

command line. Such a file enables you to avoid having to rewrite the same options. For 



 
Big Data Analytics[18CS72] 
 

SUNIL G L, Dept. CSE, SVIT Page 34 
 

example, a file called world-options.txt with the following contents will include 

the import command, --connect, --username, and --password options: 

   import 
   --connect 
   jdbc:mysql://limulus/world 
   --username 
   sqoop 
   --password 
   sqoop 

The same import command can be performed with the following shorter line: 
$ sqoop  --options-file world-options.txt --table City  -m 1 --target-dir /user/hdfs/sqoop-mysql-import/city 

It is also possible to include an SQL Query in the import step. For example, suppose we want 

just cities in Canada: 

SELECT ID,Name from City WHERE CountryCode='CAN' 
In such a case, we can include the --query option in the Sqoop import request. The --

query option also needs a variable called $CONDITIONS, which will be explained next. In 

the following query example, a single mapper task is designated with the -m 1 option: 

sqoop  --options-file world-options.txt -m 1 --target-dir /user/hdfs/sqoop-mysql-import/canada-city --
query "SELECT ID,Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" 

Inspecting the results confirms that only cities from Canada have been imported: 

   $ hdfs dfs -cat sqoop-mysql-import/canada-city/part-m-00000 

   1810,MontrÄal 

   1811,Calgary 

   1812,Toronto 

   ... 

   1856,Sudbury 

   1857,Kelowna 

   1858,Barrie 

Since there was only one mapper process, only one copy of the query needed to be run on the 

database. The results are also reported in a single file (part-m-0000). 

Multiple mappers can be used to process the query if the --split-by option is used. The split-

by option is used to parallelize the SQL query. Each parallel task runs a subset of the main 

query, with the results of each sub-query being partitioned by bounding conditions inferred 

by Sqoop. Your query must include the token $CONDITIONS that each Sqoop process will 

replace with a unique condition expression based on the --split-by option. Note 

that $CONDITIONS is not an environment variable. Although Sqoop will try to create 



 
Big Data Analytics[18CS72] 
 

SUNIL G L, Dept. CSE, SVIT Page 35 
 

balanced sub-queries based on the range of your primary key, it may be necessary to split on 

another column if your primary key is not uniformly distributed. 

The following example illustrates the use of the --split-by option. First, remove the results of 

the previous query: 

   $ hdfs dfs -rm -r -skipTrash  sqoop-mysql-import/canada-city 

Next, run the query using four mappers (-m 4), where we split by the ID number (--split-by 
ID): 
sqoop  --options-file world-options.txt -m 4 --target-dir /user/hdfs/sqoop-mysql-import/canada-city --
query "SELECT ID,Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" --split-by 
ID 

If we look at the number of results files, we find four files corresponding to the four mappers 

we requested in the command: 

$ hdfs dfs -ls  sqoop-mysql-import/canada-city 
Found 5 items 
-rw-r--r--   2 hdfs hdfs       0 2014-08-18 21:31 sqoop-mysql-import/ 
canada-city/_SUCCESS 
-rw-r--r--   2 hdfs hdfs     175 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 
part-m-00000 
-rw-r--r--   2 hdfs hdfs     153 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 
part-m-00001 
-rw-r--r--   2 hdfs hdfs     186 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 
part-m-00002 
-rw-r--r--   2 hdfs hdfs     182 2014-08-18 21:31 sqoop-mysql-import/canada-city/ 
part-m-00003 

Step 4: Export Data from HDFS to MySQL 

Sqoop can also be used to export data from HDFS. The first step is to create tables for 

exported data. There are actually two tables needed for each exported table. The first table 

holds the exported data (CityExport), and the second is used for staging the exported data 

(CityExportStaging). Enter the following MySQL commands to create these tables: 

   mysql> CREATE TABLE 'CityExport' ( 
            'ID' int(11) NOT NULL AUTO_INCREMENT, 
            'Name' char(35) NOT NULL DEFAULT '', 
            'CountryCode' char(3) NOT NULL DEFAULT '', 
            'District' char(20) NOT NULL DEFAULT '', 
            'Population' int(11) NOT NULL DEFAULT '0', 
            PRIMARY KEY ('ID')); 
   mysql> CREATE TABLE 'CityExportStaging' ( 
            'ID' int(11) NOT NULL AUTO_INCREMENT, 
            'Name' char(35) NOT NULL DEFAULT '', 
            'CountryCode' char(3) NOT NULL DEFAULT '', 
            'District' char(20) NOT NULL DEFAULT '', 
            'Population' int(11) NOT NULL DEFAULT '0', 
            PRIMARY KEY ('ID')); 
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Next, create a cities-export-options.txt file similar to the world-options.txt created previously, 

but use the export command instead of the import command. 

The following command will export the cities data we previously imported back into 

MySQL: 

sqoop --options-file cities-export-options.txt --table CityExport  --staging-table CityExportStaging  --
clear-staging-table -m 4 --export-dir /user/hdfs/sqoop-mysql-import/city 

Finally, to make sure everything worked correctly, check the table in MySQL to see if the 

cities are in the table: 

   $ mysql> select * from CityExport limit 10; 
   +----+----------------+-------------+---------------+------------+ 
   | ID | Name           | CountryCode | District      | Population | 
   +----+----------------+-------------+---------------+------------+ 
   |  1 | Kabul          | AFG         | Kabol         |    1780000 | 
   |  2 | Qandahar       | AFG         | Qandahar      |     237500 | 
   |  3 | Herat          | AFG         | Herat         |     186800 | 
   |  4 | Mazar-e-Sharif | AFG         | Balkh         |     127800 | 
   |  5 | Amsterdam      | NLD         | Noord-Holland |     731200 | 
   |  6 | Rotterdam      | NLD         | Zuid-Holland  |     593321 | 
   |  7 | Haag           | NLD         | Zuid-Holland  |     440900 | 
   |  8 | Utrecht        | NLD         | Utrecht       |     234323 | 
   |  9 | Eindhoven      | NLD         | Noord-Brabant |     201843 | 
   | 10 | Tilburg        | NLD         | Noord-Brabant |     193238 | 
   +----+----------------+-------------+---------------+------------+ 
   10 rows in set (0.00 sec) 

Some Handy Cleanup Commands 

If you are not especially familiar with MySQL, the following commands may be helpful to 

clean up the examples. To remove the table in MySQL, enter the following command: 

mysql> drop table 'CityExportStaging'; 

To remove the data in a table, enter this command: 
mysql> delete from CityExportStaging; 

To clean up imported files, enter this command: 

$ hdfs dfs -rm -r  -skipTrash sqoop-mysql-import/{country,city, canada-city} 

USING APACHE FLUME TO ACQUIRE DATA STREAMS 

Apache Flume is an independent agent designed to collect, transport, and store data into 

HDFS. Often data transport involves a number of Flume agents that may traverse a series of 

machines and locations. Flume is often used for log files, social media-generated data, email 

messages, and just about any continuous data source. As shown in Figure 7.3, a Flume agent 

is composed of three components. 
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Figure 7.3 Flume agent with source, channel, and sink (Adapted from Apache Flume Documentation) 

 Source. The source component receives data and sends it to a channel. It can send the data 

to more than one channel. The input data can be from a real-time source (e.g., weblog) or 

another Flume agent. 

 Channel. A channel is a data queue that forwards the source data to the sink destination. It 

can be thought of as a buffer that manages input (source) and output (sink) flow rates. 

 Sink. The sink delivers data to destination such as HDFS, a local file, or another Flume 

agent. 

A Flume agent must have all three of these components defined. A Flume agent can have 

several sources, channels, and sinks. Sources can write to multiple channels, but a sink can 

take data from only a single channel. Data written to a channel remain in the channel until a 

sink removes the data. By default, the data in a channel are kept in memory but may be 

optionally stored on disk to prevent data loss in the event of a network failure. 

As shown in Figure 7.4, Sqoop agents may be placed in a pipeline, possibly to traverse 

several machines or domains. This configuration is normally used when data are collected on 

one machine (e.g., a web server) and sent to another machine that has access to HDFS. 

 
Figure 7.4 Pipeline created by connecting Flume agents (Adapted from Apache Flume Sqoop Documentation) 

In a Flume pipeline, the sink from one agent is connected to the source of another. The data 

transfer format normally used by Flume, which is called Apache Avro, provides several 

useful features. First, Avro is a data serialization/deserialization system that uses a compact 
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binary format. The schema is sent as part of the data exchange and is defined using JSON 

(JavaScript Object Notation). Avro also uses remote procedure calls (RPCs) to send data. 

That is, an Avro sink will contact an Avro source to send data. 

Another useful Flume configuration is shown in Figure 7.5. In this configuration, Flume is 

used to consolidate several data sources before committing them to HDFS. 

 
Figure 7.5 A Flume consolidation network (Adapted from Apache Flume Documentation) 

There are many possible ways to construct Flume transport networks. In addition, other 

Flume features not described in depth here include plug-ins and interceptors that can enhance 

Flume pipelines.  

Flume Example Walk-Through 
Follow these steps to walk through a Flume example. 

Step 1: Download and Install Apache Flume 

Step 2: Simple Test 
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A simple test of Flume can be done on a single machine. To start the Flume agent, enter 

the flume-ng command shown here. This command uses the simple-example.conf file to 

configure the agent. 

$ flume-ng agent --conf conf --conf-file simple-example.conf --name simple_agent - 
Dflume.root.logger=INFO,console 

In another terminal window, use telnet to contact the agent: 

$ telnet localhost 44444 
  Trying ::1... 
  telnet: connect to address ::1: Connection refused 
  Trying 127.0.0.1... 
  Connected to localhost. 
  Escape character is '^]'. 
  testing  1 2 3 
  OK 

If Flume is working correctly, the window where the Flume agent was started will show the 

testing message entered in the telnet window: 

Step 3: Weblog Example 

In this example, a record from the weblogs from the local machine (Ambari output) will be 

placed into HDFS using Flume. This example is easily modified to use other weblogs from 

different machines. Two files are needed to configure Flume. (See the sidebar and Appendix 

A for file downloading instructions.) 

 web-server-target-agent.conf—the target Flume agent that writes the data to HDFS 
 web-server-source-agent.conf—the source Flume agent that captures the weblog data 

The weblog is also mirrored on the local file system by the agent that writes to HDFS. To run 

the example, create the directory as root: 

# mkdir /var/log/flume-hdfs 
# chown hdfs:hadoop /var/log/flume-hdfs/ 

Next, as user hdfs, make a Flume data directory in HDFS: 

$ hdfs dfs -mkdir /user/hdfs/flume-channel/ 

Now that you have created the data directories, you can start the Flume target agent (execute 

as user hdfs): 

$ flume-ng agent -c conf -f web-server-target-agent.conf -n collector 

This agent writes the data into HDFS and should be started before the source agent. (The 

source reads the weblogs.) This configuration enables automatic use of the Flume agent. 

The /etc/flume/conf/{flume.conf, flume-env.sh.template} files need to be configured for this 

purpose. For this example, the /etc/flume/conf/flume.conf file can be the same as the web-

server-target.conf file (modified for your environment). 
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In this example, the source agent is started as root, which will start to feed the weblog data to 

the target agent. Alternatively, the source agent can be on another machine if desired. 

# flume-ng agent -c conf -f web-server-source-agent.conf -n source_agent 

To see if Flume is working correctly, check the local log by using the tail command. Also 

confirm that the flume-ng agents are not reporting any errors (the file name will vary). 

$ tail -f /var/log/flume-hdfs/1430164482581-1 

The contents of the local log under flume-hdfs should be identical to that written into HDFS. 

You can inspect this file by using the hdfs -tail command (the file name will vary). Note that 

while running Flume, the most recent file in HDFS may have the extension .tmp appended to 

it. The .tmpindicates that the file is still being written by Flume. The target agent can be 

configured to write the file (and start another .tmp file) by setting some or all of 

the rollCount, rollSize, rollInterval, idleTimeout, and batchSize options in the configuration 

file. 

$ hdfs dfs -tail flume-channel/apache_access_combined/150427/FlumeData.1430164801381 

Both files should contain the same data. For instance, the preceding example had the 

following data in both files: 

10.0.0.1 - - [27/Apr/2015:16:04:21 -0400] "GET /ambarinagios/nagios/ 
nagios_alerts.php?q1=alerts&alert_type=all HTTP/1.1" 200 30801 "-" "Java/1.7.0_65" 
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 784 
"-" "Java/1.7.0_65" 
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 508 
"-" "Java/1.7.0_65" 

MANAGE HADOOP WORKFLOWS WITH APACHE OOZIE 
Oozie is a workflow director system designed to run and manage multiple related Apache 

Hadoop jobs. For instance, complete data input and analysis may require several discrete 

Hadoop jobs to be run as a workflow in which the output of one job serves as the input for a 

successive job. Oozie is designed to construct and manage these workflows. Oozie is not a 

substitute for the YARN scheduler. That is, YARN manages resources for individual Hadoop 

jobs, and Oozie provides a way to connect and control Hadoop jobs on the cluster. 

Oozie workflow jobs are represented as directed acyclic graphs (DAGs) of actions. (DAGs 

are basically graphs that cannot have directed loops.) Three types of Oozie jobs are 

permitted: 
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 Workflow—a specified sequence of Hadoop jobs with outcome-based decision points and 

control dependency. Progress from one action to another cannot happen until the first action 

is complete. 

 Coordinator—a scheduled workflow job that can run at various time intervals or when data 

become available. 

 Bundle—a higher-level Oozie abstraction that will batch a set of coordinator jobs. 

Oozie is integrated with the rest of the Hadoop stack, supporting several types of Hadoop 

jobs out of the box (e.g., Java MapReduce, Streaming MapReduce, Pig, Hive, and Sqoop) as 

well as system-specific jobs (e.g., Java programs and shell scripts). Oozie also provides a CLI 

and a web UI for monitoring jobs. 

Figure 7.6 depicts a simple Oozie workflow. In this case, Oozie runs a basic MapReduce 

operation. If the application was successful, the job ends; if an error occurred, the job is 

killed. 

 

Figure 7.6 A simple Oozie DAG workflow (Adapted from Apache Oozie Documentation) 

Oozie workflow definitions are written in hPDL (an XML Process Definition Language). 

Such workflows contain several types of nodes: 

 Control flow nodes define the beginning and the end of a workflow. They include start, 

end, and optional fail nodes. 

 Action nodes are where the actual processing tasks are defined. When an action node 

finishes, the remote systems notify Oozie and the next node in the workflow is executed. 

Action nodes can also include HDFS commands. 
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 Fork/join nodes enable parallel execution of tasks in the workflow. The fork node enables 

two or more tasks to run at the same time. A join node represents a rendezvous point that 

must wait until all forked tasks complete. 

 Control flow nodes enable decisions to be made about the previous task. Control decisions 

are based on the results of the previous action (e.g., file size or file existence). Decision nodes 

are essentially switch-case statements that use JSP EL (Java Server Pages—Expression 

Language) that evaluate to either true or false. 

Figure 7.7 depicts a more complex workflow that uses all of these node types.  

 

Figure 7.7 A more complex Oozie DAG workflow (Adapted from Apache Oozie Documentation) 

Oozie Example Walk-Through 

Step 1: Download Oozie Examples 

The Oozie examples used in this section can be found on the book website (see Appendix A). 

They are also available as part of the oozie-client.noarch RPM in the Hortonworks HDP 2.x 

packages. For HDP 2.1, the following command can be used to extract the files into the 

working directory used for the demo: 

$ tar xvzf /usr/share/doc/oozie-4.0.0.2.1.2.1/oozie-examples.tar.gz 

For HDP 2.2, the following command will extract the files: 

$ tar xvzf /usr/hdp/2.2.4.2-2/oozie/doc/oozie-examples.tar.gz 
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Once extracted, rename the examples directory to oozie-examples so that you will not 

confuse it with the other examples directories. 

$ mv examples oozie-examples 

The examples must also be placed in HDFS. Enter the following command to move the 

example files into HDFS: 

$ hdfs dfs -put oozie-examples/ oozie-examples 
The Oozie shared library must be installed in HDFS. If you are using the Ambari installation 

of HDP 2.x, this library is already found in HDFS: /user/oozie/share/lib. 

Step 2: Run the Simple MapReduce Example 

Move to the simple MapReduce example directory: 

$ cd oozie-examples/apps/map-reduce/ 

This directory contains two files and a lib directory. The files are: 

 The job.properties file defines parameters (e.g., path names, ports) for a job. This file may 

change per job. 

 The workflow.xml file provides the actual workflow for the job. In this case, it is a simple 

MapReduce (pass/fail). This file usually stays the same between jobs. 

The job.properties file included in the examples requires a few edits to work properly. Using 

a text editor, change the following lines by adding the host name of the NameNode and 

ResourceManager (indicated by jobTracker in the file). 

As shown in Figure 7.6, this simple workflow runs an example MapReduce job and prints an 

error message if it fails. 

To run the Oozie MapReduce example job from the oozie-examples/apps/map-

reduce directory, enter the following line: 

$ oozie job -run -oozie http://limulus:11000/oozie -config job.properties 

When Oozie accepts the job, a job ID will be printed: 

job: 0000001-150424174853048-oozie-oozi-W 

You will need to change the “limulus” host name to match the name of the node running your 

Oozie server. The job ID can be used to track and control job progress. 

To avoid having to provide the -oozie option with the Oozie URL every time you run 

the ooziecommand, set the OOZIE_URL environment variable as follows (using your Oozie 

server host name in place of “limulus”): 

$ export OOZIE_URL="http://limulus:11000/oozie" 
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You can now run all subsequent Oozie commands without specifying the -oozie URL option. 

For instance, using the job ID, you can learn about a particular job’s progress by issuing the 

following command: 

$ oozie job -info 0000001-150424174853048-oozie-oozi-W 

The resulting output (line length compressed) is shown in the following listing. Because this 

job is just a simple test, it may be complete by the time you issue the -info command. If it is 

not complete, its progress will be indicated in the listing. 

Job ID : 0000001-150424174853048-oozie-oozi-W 
------------------------------------------------------------------------------------ 
Workflow Name : map-reduce-wf 
App Path      : hdfs://limulus:8020/user/hdfs/examples/apps/map-reduce 
Status        : SUCCEEDED 
Run           : 0 
User          : hdfs 
Group         : - 
Created       : 2015-04-29 20:52 GMT 
Started       : 2015-04-29 20:52 GMT 
Last Modified : 2015-04-29 20:53 GMT 
Ended         : 2015-04-29 20:53 GMT 
CoordAction ID: - 
 
Actions 
------------------------------------------------------------------------------------ 
ID                                         Status   Ext ID    Ext Status  Err Code 
------------------------------------------------------------------------------------ 
0000001-150424174853048-oozie 
  -oozi-W@:start:                            OK        -            OK        - 
------------------------------------------------------------------------------------ 
0000001-150424174853048-oozie 
  -oozi-W@mr-node                             OK  job_1429912013449_0006 SUCCEEDED - 
------------------------------------------------------------------------------------ 
0000001-150424174853048-oozie 
  -oozi-W@end                                OK        -             OK       - 
------------------------------------------------------------------------------------ 
The various steps shown in the output can be related directly to the workflow.xml mentioned 

previously. Note that the MapReduce job number is provided. This job will also be listed in 

the ResourceManager web user interface. The application output is located in HDFS under 

the oozie-examples/output-data/map-reduce directory. 

Step 3: Run the Oozie Demo Application 

A more sophisticated example can be found in the demo directory (oozie-

examples/apps/demo). This workflow includes MapReduce, Pig, and file system tasks as well 

as fork, join, decision, action, start, stop, kill, and end nodes. 

Move to the demo directory and edit the job.properties file as described previously. Entering 

the following command runs the workflow (assuming the OOZIE_URL environment variable 

has been set): 
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$ oozie job -run -config job.properties 

You can track the job using either the Oozie command-line interface or the Oozie web 

console. To start the web console from within Ambari, click on the Oozie service, and then 

click on the Quick Links pull-down menu and select Oozie Web UI. Alternatively, you can 

start the Oozie web UI by connecting to the Oozie server directly. For example, the following 

command will bring up the Oozie UI (use your Oozie server host name in place of 

“limulus”): 

$ firefox  http://limulus:11000/oozie/ 

Figure 7.8 shows the main Oozie console window.  

 

Figure 7.8 Oozie main console window 

Workflow jobs are listed in tabular form, with the most recent job appearing first. If you click 

on a workflow, the Job Info window in Figure 7.9 will be displayed. The job progression 

results, similar to those printed by the Oozie command line, are shown in the Actions window 

at the bottom. 
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Figure 7.9 Oozie workflow information window 

Other aspects of the job can be examined by clicking the other tabs in the window. The last 

tab actually provides a graphical representation of the workflow DAG. If the job is not 

complete, it will highlight the steps that have been completed thus far. The DAG for the 

demo example is shown in Figure 7.10. The actual image was split to fit better on the page. 

As with the previous example, comparing this information to workflow.xml file can provide 

further insights into how Oozie operates. 
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Figure 7.10 Oozie-generated workflow DAG for the demo example, as it appears on the screen 

A Short Summary of Oozie Job Commands 

The following summary lists some of the more commonly encountered Oozie commands. See 

the latest documentation at http://oozie.apache.org for more information. (Note that the 

examples here assume OOZIE_URL is defined.) 

 Run a workflow job (returns _OOZIE_JOB_ID_): 

$ oozie job -run -config JOB_PROPERITES 

 Submit a workflow job (returns _OOZIE_JOB_ID_ but does not start): 

$ oozie job -submit -config JOB_PROPERTIES 
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 Start a submitted job: 

$ oozie job -start _OOZIE_JOB_ID_ 

 Check a job’s status: 

$ oozie job -info _OOZIE_JOB_ID_ 

 Suspend a workflow: 

$ oozie job -suspend _OOZIE_JOB_ID_ 

 Resume a workflow: 

$ oozie job -resume _OOZIE_JOB_ID_ 

 Rerun a workflow: 

$ oozie job -rerun _OOZIE_JOB_ID_ -config JOB_PROPERTIES 

 Kill a job: 

$ oozie job -kill _OOZIE_JOB_ID_ 

 View server logs: 

$ oozie job  -logs _OOZIE_JOB_ID_ 

Full logs are available at /var/log/oozie on the Oozie server. 

USING APACHE HBASE 
Apache HBase is an open source, distributed, versioned, nonrelational database modeled after 

Google’s Bigtable. Like Bigtable, HBase leverages the distributed data storage provided by 

the underlying distributed file systems spread across commodity servers. Apache HBase 

provides Bigtable-like capabilities on top of Hadoop and HDFS. Some of the more important 

features include the following capabilities: 

 Linear and modular scalability 

 Strictly consistent reads and writes 

 Automatic and configurable sharding of tables 

 Automatic failover support between RegionServers 

 Convenient base classes for backing Hadoop MapReduce jobs with Apache HBase tables 

 Easy-to-use Java API for client access 

HBase Data Model Overview 
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A table in HBase is similar to other databases, having rows and columns. Columns in HBase 

are grouped into column families, all with the same prefix. For example, consider a table of 

daily stock prices. There may be a column family called “price” that has four members—

price:open, price:close, price:low, and price:high. A column does not need to be a family. For 

instance, the stock table may have a column named “volume” indicating how many shares 

were traded. All column family members are stored together in the physical file system. 

Specific HBase cell values are identified by a row key, column (column family and column), 

and version (timestamp). It is possible to have many versions of data within an HBase cell. A 

version is specified as a timestamp and is created each time data are written to a cell. Almost 

anything can serve as a row key, from strings to binary representations of longs to serialized 

data structures. Rows are lexicographically sorted with the lowest order appearing first in a 

table. The empty byte array denotes both the start and the end of a table’s namespace. All 

table accesses are via the table row key, which is considered its primary key.  

HBase Example Walk-Through 

HBase provides a shell for interactive use. To enter the shell, type the following as a user: 

$ hbase shell 

hbase(main):001:0> 

To exit the shell, type exit. 

Various commands can be conveniently entered from the shell prompt. For instance, 

the status command provides the system status: 

hbase(main):001:0> status 
4 servers, 0 dead, 1.0000 average load 
Additional arguments can be added to the status command, including 'simple', 'summary', 

or 'detailed'. The single quotes are needed for proper operation. For example, the following 

command will provide simple status information for the four HBase servers (actual server 

statistics have been removed for clarity): 

hbase(main):002:0> status 'simple' 
4 live servers 
    n1:60020 1429912048329 
       ... 
    n2:60020 1429912040653 
        ... 
    limulus:60020 1429912041396 
        ... 
    n0:60020 1429912042885 
        ... 
0 dead servers 
Aggregate load: 0, regions: 4 
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Other basic commands, such as version or whoami, can be entered directly at 

the hbase(main)prompt. In the example that follows, we will use a small set of daily stock 

price data for Apple computer. The data have the following form: 

 

The data can be downloaded from Google using the following command. Note that other 

stock prices are available by changing the NASDAQ:AAPL argument to any other valid 

exchange and stock name (e.g., NYSE: IBM). 

$ wget -O Apple-stock.csv 
http://www.google.com/finance/historical?q=NASDAQ:AAPL\&authuser=0\&output=csv 

The Apple stock price database is in comma-separated format (csv) and will be used to 

illustrate some basic operations in the HBase shell. 

Create the Database 

The next step is to create the database in HBase using the following command: 

hbase(main):006:0> create 'apple', 'price' , 'volume' 
0 row(s) in 0.8150 seconds 
In this case, the table name is apple, and two columns are defined. The date will be used as 

the row key. The price column is a family of four values (open, close, low, high). 

The put command is used to add data to the database from within the shell. For instance, the 

preceding data can be entered by using the following commands: 

put 'apple','6-May-15','price:open','126.56' 
put 'apple','6-May-15','price:high','126.75' 
put 'apple','6-May-15','price:low','123.36' 
put 'apple','6-May-15','price:close','125.01' 
put 'apple','6-May-15','volume','71820387' 

The shell also keeps a history for the session, and previous commands can be retrieved and 

edited for resubmission. 

Inspect the Database 

The entire database can be listed using the scan command. Be careful when using this 

command with large databases. This example is for one row. 

hbase(main):006:0> scan 'apple' 
ROW             COLUMN+CELL 
 6-May-15       column=price:close, timestamp=1430955128359, value=125.01 
 6-May-15       column=price:high, timestamp=1430955126024, value=126.75 
 6-May-15       column=price:low, timestamp=1430955126053, value=123.36 
 6-May-15       column=price:open, timestamp=1430955125977, value=126.56 
 6-May-15       column=volume:, timestamp=1430955141440, value=71820387 



 
Big Data Analytics[18CS72] 
 

SUNIL G L, Dept. CSE, SVIT Page 51 
 

Get a Row 

You can use the row key to access an individual row. In the stock price database, the date is 

the row key. 

hbase(main):008:0> get 'apple', '6-May-15' 
COLUMN                            CELL 
 price:close                      timestamp=1430955128359, value=125.01 
 price:high                       timestamp=1430955126024, value=126.75 
 price:low                        timestamp=1430955126053, value=123.36 
 price:open                       timestamp=1430955125977, value=126.56 
 volume:                          timestamp=1430955141440, value=71820387 
5 row(s) in 0.0130 seconds 

Get Table Cells 

A single cell can be accessed using the get command and the COLUMN option: 

hbase(main):013:0> get 'apple', '5-May-15', {COLUMN => 'price:low'} 

COLUMN                            CELL 

 price:low                        timestamp=1431020767444, value=125.78 

1 row(s) in 0.0080 seconds 

In a similar fashion, multiple columns can be accessed as follows: 

hbase(main):012:0> get 'apple', '5-May-15', {COLUMN => ['price:low', 'price:high']} 

COLUMN                            CELL 

 price:high                       timestamp=1431020767444, value=128.45 

 price:low                        timestamp=1431020767444, value=125.78 

2 row(s) in 0.0070 seconds 

Delete a Cell 

A specific cell can be deleted using the following command: 

hbase(main):009:0> delete 'apple', '6-May-15' , 'price:low' 

If the row is inspected using get, the price:low cell is not listed. 

hbase(main):010:0> get 'apple', '6-May-15' 
COLUMN                            CELL 
 price:close                      timestamp=1430955128359, value=125.01 
 price:high                       timestamp=1430955126024, value=126.75 
 price:open                       timestamp=1430955125977, value=126.46 
 volume:                          timestamp=1430955141440, value=71820387 
4 row(s) in 0.0130 seconds 

Delete a Row 

You can delete an entire row by giving the deleteall command as follows: 

hbase(main):009:0> deleteall 'apple', '6-May-15' 

Remove a Table 
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To remove (drop) a table, you must first disable it. The following two commands remove 

the appletable from Hbase: 

hbase(main):009:0> disable 'apple' 
hbase(main):010:0> drop 'apple' 

Scripting Input 

Commands to the HBase shell can be placed in bash scripts for automated processing. For 

instance, the following can be placed in a bash script: 

echo "put 'apple','6-May-15','price:open','126.56'" | hbase shell 

The book software page includes a script (input_to_hbase.sh) that imports the Apple-

stock.csv file into HBase using this method. It also removes the column titles in the first line. 

The script will load the entire file into HBase when you issue the following command: 

$ input_to_hbase.sh Apple-stock.csv 

While the script can be easily modified to accommodate other types of data, it is not 

recommended for production use because the upload is very inefficient and slow. Instead, this 

script is best used to experiment with small data files and different types of data. 

Adding Data in Bulk 

There are several ways to efficiently load bulk data into HBase. Covering all of these 

methods is beyond the scope of this chapter. Instead, we will focus on the ImportTsv utility, 

which loads data in tab-separated values (tsv) format into HBase. It has two distinct usage 

modes: 

 Loading data from a tsv-format file in HDFS into HBase via the put command 

 Preparing StoreFiles to be loaded via the completebulkload utility 

The following example shows how to use ImportTsv for the first option, loading the tsv-

format file using the put command.  

The first step is to convert the Apple-stock.csv file to tsv format. The following script, which 

is included in the book software, will remove the first line and do the conversion. In doing so, 

it creates a file named Apple-stock.tsv. 

$ convert-to-tsv.sh Apple-stock.csv 

Next, the new file is copied to HDFS as follows: 
$ hdfs dfs -put Apple-stock.tsv /tmp 
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Finally, ImportTsv is run using the following command line. Note the column designation in 

the -Dimporttsv.columns option. In the example, the HBASE_ROW_KEY is set as the first 

column—that is, the date for the data. 

$ hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -
Dimporttsv.columns=HBASE_ROW_KEY,price:open,price:high,price:low,price:close,volume apple 
/tmp/Apple-stock.tsv 

The ImportTsv command will use MapReduce to load the data into HBase. To verify that the 

command works, drop and re-create the apple database, as described previously, before 

running the import command. 

8. Hadoop YARN Applications 
In This Chapter: 

 The YARN Distributed-Shell is introduced as a non-MapReduce application. 

 The Hadoop YARN application and operation structure is explained. 

 A summary of YARN application frameworks is provided. 

YARN DISTRIBUTED-SHELL 
The Hadoop YARN project includes the Distributed-Shell application, which is an example 

of a Hadoop non-MapReduce application built on top of YARN. Distributed-Shell is a simple 

mechanism for running shell commands and scripts in containers on multiple nodes in a 

Hadoop cluster. This application is not meant to be a production administration tool, but 

rather a demonstration of the non-MapReduce capability that can be implemented on top of 

YARN. There are multiple mature implementations of a distributed shell that administrators 

typically use to manage a cluster of machines. 

In addition, Distributed-Shell can be used as a starting point for exploring and building 

Hadoop YARN applications. This chapter offers guidance on how the Distributed-Shell can 

be used to understand the operation of YARN applications. 

USING THE YARN DISTRIBUTED-SHELL 
For the purpose of the examples presented in the remainder of this chapter, we assume and 

assign the following installation path, based on Hortonworks HDP 2.2, the Distributed-Shell 

application: 

$ export YARN_DS=/usr/hdp/current/hadoop-yarn-client/hadoop-yarn-applications- 
distributedshell.jar 
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For the pseudo-distributed install using Apache Hadoop version 2.6.0, the following path will 

run the Distributed-Shell application (assuming $HADOOP_HOME is defined to reflect the 

location Hadoop): 

$ export YARN_DS=$HADOOP_HOME/share/hadoop/yarn/hadoop-yarn-applications- 
distributedshell-2.6.0.jar 

If another distribution is used, search for the file hadoop-yarn-applications-

distributedshell*.jar and set $YARN_DS based on its location. Distributed-Shell exposes 

various options that can be found by running the following command: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -help 

The output of this command follows; we will explore some of these options in the examples 

illustrated in this chapter. 

usage: Client 
 -appname <arg>                     Application Name. Default value – DistributedShell 
 -container_memory <arg>     Amount of memory in MB to be requested to run the shell command 
 -container_vcores <arg>        Amount of virtual cores to be requested to run the shell command 
 -create                                     Flag to indicate whether to create the domain specified with -domain. 
 -debug                                     Dump out debug information 
 -domain <arg>                        ID of the timeline domain where the timeline entities will be put 
 -help                                        Print usage 
 -jar <arg>                                Jar file containing the application master 
 -log_properties <arg>             log4j.properties file 
 -master_memory <arg>         Amount of memory in MB to be requested to run the application master 
 -master_vcores <arg>            Amount of virtual cores to be requested to run the application master 
 -modify_acls <arg>               Users and groups that allowed to modify the timeline entities in the given domain 
 -timeout <arg>                       Application timeout in milliseconds 
 -view_acls <arg>                   Users and groups that allowed to view the timeline entities in the  given domain 

A Simple Example 

The simplest use-case for the Distributed-Shell application is to run an arbitrary shell 

command in a container. We will demonstrate the use of the uptime command as an example. 

This command is run on the cluster using Distributed-Shell as follows: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command 
uptime 

By default, Distributed-Shell spawns only one instance of a given shell command. When this 

command is run, you can see progress messages on the screen but nothing about the actual 

shell command. If the shell command succeeds, the following should appear at the end of the 

output: 

15/05/27 14:48:53 INFO distributedshell.Client: Application completed successfully 
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If the shell command did not work for whatever reason, the following message will be 

displayed: 

15/05/27 14:58:42 ERROR distributedshell.Client: Application failed to complete 
successfully 

The next step is to examine the output for the application. Distributed-Shell redirects the 

output of the individual shell commands run on the cluster nodes into the log files, which are 

found either on the individual nodes or aggregated onto HDFS, depending on whether log 

aggregation is enabled. 

Assuming log aggregation is enabled, the results for each instance of the command can be 

found by using the yarn logs command. For the previous uptime example, the following 

command can be used to inspect the logs: 

$ yarn logs -applicationId application_1432831236474_0001 

The abbreviated output follows: 

Container: container_1432831236474_0001_01_000001 on n0_45454 
=============================================================== 
LogType:AppMaster.stderr 
Log Upload Time:Thu May 28 12:41:58 -0400 2015 
LogLength:3595 
Log Contents: 
15/05/28 12:41:52 INFO distributedshell.ApplicationMaster: Initializing 
ApplicationMaster 
[...] 
Container: container_1432831236474_0001_01_000002 on n1_45454 
=============================================================== 
LogType:stderr 
Log Upload Time:Thu May 28 12:41:59 -0400 2015 
LogLength:0 
Log Contents: 
 
LogType:stdout 
Log Upload Time:Thu May 28 12:41:59 -0400 2015 
LogLength:71 
Log Contents: 
 12:41:56 up 33 days, 19:28,  0 users,  load average: 0.08, 0.06, 0.01 

Notice that there are two containers. The first container (con..._000001) is the ApplicationMaster 

for the job. The second container (con..._000002) is the actual shell script. The output for 

the uptime command is located in the second containers stdout after the Log Contents: label. 

Using More Containers 
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Distributed-Shell can run commands to be executed on any number of containers by way of 

the -num_containers argument. For example, to see on which nodes the Distributed-Shell 

command was run, the following command can be used: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command 

hostname -num_containers 4 

If we now examine the results for this job, there will be five containers in the log. The four 

command containers (2 through 5) will print the name of the node on which the container was 

run. 

Distributed-Shell Examples with Shell Arguments 

Arguments can be added to the shell command using the -shell_args option. For example, to 

do a ls -l in the directory from where the shell command was run, we can use the following 

commands: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS  -shell_command ls -
shell_args -l 

The resulting output from the log file is as follows: 

total 20 
-rw-r--r-- 1 yarn hadoop   74 May 28 10:37 container_tokens 
-rwx------ 1 yarn hadoop  643 May 28 10:37 default_container_executor_session.sh 
-rwx------ 1 yarn hadoop  697 May 28 10:37 default_container_executor.sh 
-rwx------ 1 yarn hadoop 1700 May 28 10:37 launch_container.sh 
drwx--x--- 2 yarn hadoop 4096 May 28 10:37 tmp 

As can be seen, the resulting files are new and not located anywhere in HDFS or the local file 

system. When we explore further by giving a pwd command for Distributed-Shell, the 

following directory is listed and created on the node that ran the shell command: 

/hdfs2/hadoop/yarn/local/usercache/hdfs/appcache/application_1432831236474_0003/container_14328312

36474_0003_01_000002/ 

Searching for this directory will prove to be problematic because these transient files are used 

by YARN to run the Distributed-Shell application and are removed once the application 

finishes. You can preserve these files for a specific interval by adding the following lines to 

the yarn-site.xmlconfiguration file and restarting YARN: 

<property> 
    <name>yarn.nodemanager.delete.debug-delay-sec</name> 
    <value>100000</value> 
</property> 
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Choose a delay, in seconds, to preserve these files, and remember that all applications will 

create these files. If you are using Ambari, look on the YARN Configs tab under the 

Advanced yarn-site options, make the change and restart YARN. (See Chapter 9, “Managing 

Hadoop with Apache Ambari,” for more information on Ambari administration.) These files 

will be retained on the individual nodes only for the duration of the specified delay. 

When debugging or investigating YARN applications, these files—in 

particular, launch_container.sh—offer important information about YARN processes. 

Distributed-Shell can be used to see what this file contains. Using DistributedShell, the 

contents of the launch_container.sh file can be printed with the following command: 

$ yarn org.apache.hadoop.yarn.applications.distributedshell.Client -jar $YARN_DS -shell_command cat 
-shell_args launch_container.sh 

This command prints the launch_container.sh file that is created and run by YARN. The 

contents of this file are shown in Listing 8.1. The file basically exports some important 

YARN variables and then, at the end, “execs” the command (cat launch_container.sh) 

directly and sends any output to logs. 

Listing 8.1 Distributed-Shell launch_container.sh File 

#!/bin/bash 
 
export NM_HTTP_PORT="8042" 
export LOCAL_DIRS="/opt/hadoop/yarn/local/usercache/hdfs/appcache/ 
application_1432816241597_0004,/hdfs1/hadoop/yarn/local/usercache/hdfs/appc
ache/ 
application_1432816241597_0004,/hdfs2/hadoop/yarn/local/usercache/hdfs/appc
ache/ 
application_1432816241597_0004" 
export JAVA_HOME="/usr/lib/jvm/java-1.7.0-openjdk.x86_64" 
export 
NM_AUX_SERVICE_mapreduce_shuffle="AAA0+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAA= 
" 
export HADOOP_YARN_HOME="/usr/hdp/current/hadoop-yarn-client" 
export HADOOP_TOKEN_FILE_LOCATION="/hdfs2/hadoop/yarn/local/usercache/hdfs/ 
appcache/application_1432816241597_0004/container_1432816241597_0004_01_000
002/ 
container_tokens" 
export NM_HOST="limulus" 
export JVM_PID="$$" 
export USER="hdfs" 
export PWD="/hdfs2/hadoop/yarn/local/usercache/hdfs/appcache/ 
application_1432816241597_0004/container_1432816241597_0004_01_000002" 
export CONTAINER_ID="container_1432816241597_0004_01_000002" 
export NM_PORT="45454" 
export HOME="/home/" 
export LOGNAME="hdfs" 
export HADOOP_CONF_DIR="/etc/hadoop/conf" 



 
Big Data Analytics[18CS72] 
 

SUNIL G L, Dept. CSE, SVIT Page 58 
 

export MALLOC_ARENA_MAX="4" 
export LOG_DIRS="/opt/hadoop/yarn/log/application_1432816241597_0004/ 
container_1432816241597_0004_01_000002,/hdfs1/hadoop/yarn/log/ 
application_1432816241597_0004/container_1432816241597_0004_01_000002,/hdfs
2/ 
hadoop/yarn/log/application_1432816241597_0004/ 
container_1432816241597_0004_01_000002" 
exec /bin/bash -c "cat launch_container.sh 
1>/hdfs2/hadoop/yarn/log/application_1432816241597_0004/ 
container_1432816241597_0004_01_000002/stdout 2>/hdfs2/hadoop/yarn/log/ 
application_1432816241597_0004/container_1432816241597_0004_01_000002/stder
r " 
hadoop_shell_errorcode=$? 
if [ $hadoop_shell_errorcode -ne 0 ] 
then 
  exit $hadoop_shell_errorcode 
fi 

There are more options for the Distributed-Shell that you can test. The real value of the 

Distributed-Shell application is its ability to demonstrate how applications are launched 

within the Hadoop YARN infrastructure. It is also a good starting point when you are 

creating YARN applications. 

STRUCTURE OF YARN APPLICATIONS 
The structure and operation of a YARN application are covered briefly in this section.  

The central YARN ResourceManager runs as a scheduling daemon on a dedicated machine 

and acts as the central authority for allocating resources to the various competing applications 

in the cluster. The ResourceManager has a central and global view of all cluster resources 

and, therefore, can ensure fairness, capacity, and locality are shared across all users. 

Depending on the application demand, scheduling priorities, and resource availability, the 

ResourceManager dynamically allocates resource containers to applications to run on 

particular nodes. A container is a logical bundle of resources (e.g., memory, cores) bound to a 

particular cluster node. To enforce and track such assignments, the ResourceManager 

interacts with a special system daemon running on each node called the NodeManager. 

Communications between the ResourceManager and NodeManagers are heartbeat based for 

scalability. NodeManagers are responsible for local monitoring of resource availability, fault 

reporting, and container life-cycle management (e.g., starting and killing jobs). The 

ResourceManager depends on the NodeManagers for its “global view” of the cluster. 

User applications are submitted to the ResourceManager via a public protocol and go through 

an admission control phase during which security credentials are validated and various 

operational and administrative checks are performed. Those applications that are accepted 
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pass to the scheduler and are allowed to run. Once the scheduler has enough resources to 

satisfy the request, the application is moved from an accepted state to a running state. Aside 

from internal bookkeeping, this process involves allocating a container for the single 

ApplicationMaster and spawning it on a node in the cluster. Often called container 0, the 

ApplicationMaster does not have any additional resources at this point, but rather must 

request additional resources from the ResourceManager. 

The ApplicationMaster is the “master” user job that manages all application life-cycle 

aspects, including dynamically increasing and decreasing resource consumption (i.e., 

containers), managing the flow of execution (e.g., in case of MapReduce jobs, running 

reducers against the output of maps), handling faults and computation skew, and performing 

other local optimizations. The ApplicationMaster is designed to run arbitrary user code that 

can be written in any programming language, as all communication with the 

ResourceManager and NodeManager is encoded using extensible network protocols  

YARN makes few assumptions about the ApplicationMaster, although in practice it expects 

most jobs will use a higher-level programming framework. By delegating all these functions 

to ApplicationMasters, YARN’s architecture gains a great deal of scalability, programming 

model flexibility, and improved user agility. For example, upgrading and testing a new 

MapReduce framework can be done independently of other running MapReduce frameworks. 

Typically, an ApplicationMaster will need to harness the processing power of multiple 

servers to complete a job. To achieve this, the ApplicationMaster issues resource requests to 

the ResourceManager. The form of these requests includes specification of locality 

preferences (e.g., to accommodate HDFS use) and properties of the containers. The 

ResourceManager will attempt to satisfy the resource requests coming from each application 

according to availability and scheduling policies. When a resource is scheduled on behalf of 

an ApplicationMaster, the ResourceManager generates a lease for the resource, which is 

acquired by a subsequent ApplicationMaster heartbeat. The ApplicationMaster then works 

with the NodeManagers to start the resource. A token-based security mechanism guarantees 

its authenticity when the ApplicationMaster presents the container lease to the NodeManager. 

In a typical situation, running containers will communicate with the ApplicationMaster 

through an application-specific protocol to report status and health information and to receive 

framework-specific commands. In this way, YARN provides a basic infrastructure for 

monitoring and life-cycle management of containers, while each framework manages 
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application-specific semantics independently. This design stands in sharp contrast to the 

original Hadoop version 1 design, in which scheduling was designed and integrated around 

managing only MapReduce tasks. 

 

Figure 8.1 YARN architecture with two clients (MapReduce and MPI). The darker client (MPI AM2) is running an MPI 
application, and the lighter client (MR AM1) is running a MapReduce application. (From Arun C. Murthy, et al., Apache 
Hadoop™ YARN, copyright © 2014, p. 45. Reprinted and electronically reproduced by permission of Pearson Education, Inc., 
New York, NY.) 

YARN APPLICATION FRAMEWORKS 

One of the most exciting aspects of Hadoop version 2 is the capability to run all types of 

applications on a Hadoop cluster. In Hadoop version 1, the only processing model available 

to users is MapReduce. In Hadoop version 2, MapReduce is separated from the resource 

management layer of Hadoop and placed into its own application framework. Indeed, the 

growing number of YARN applications offers a high level and multifaceted interface to the 

Hadoop data lake. 

YARN presents a resource management platform, which provides services such as 

scheduling, fault monitoring, data locality, and more to MapReduce and other 

frameworks. Figure 8.2 illustrates some of the various frameworks that will run under 

YARN. Note that the Hadoop version 1 applications (e.g., Pig and Hive) run under the 

MapReduce framework. 
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Figure 8.2 Example of the Hadoop version 2 ecosystem. Hadoop version 1 supports batch MapReduce applications only. 

This section presents a brief survey of emerging open source YARN application frameworks 

that are being developed to run under YARN. As of this writing, many YARN frameworks 

are under active development and the framework landscape is expected to change rapidly. 

Commercial vendors are also taking advantage of the YARN platform. Consult the webpage 

for each individual framework for full details of its current stage of development and 

deployment. 

Distributed-Shell 

As described earlier in this chapter, Distributed-Shell is an example application included with 

the Hadoop core components that demonstrates how to write applications on top of YARN. It 

provides a simple method for running shell commands and scripts in containers in parallel on 

a Hadoop YARN cluster. 

Hadoop MapReduce 

MapReduce was the first YARN framework and drove many of YARN’s requirements. It is 

integrated tightly with the rest of the Hadoop ecosystem projects, such as Apache Pig, 

Apache Hive, and Apache Oozie. 

Apache Tez 

One great example of a new YARN framework is Apache Tez. Many Hadoop jobs involve 

the execution of a complex directed acyclic graph (DAG) of tasks using separate MapReduce 
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stages. Apache Tez generalizes this process and enables these tasks to be spread across stages 

so that they can be run as a single, all-encompassing job. 

Tez can be used as a MapReduce replacement for projects such as Apache Hive and Apache 

Pig. No changes are needed to the Hive or Pig applications. 

Apache Giraph 

Apache Giraph is an iterative graph processing system built for high scalability. Facebook, 

Twitter, and LinkedIn use it to create social graphs of users. Giraph was originally written to 

run on standard Hadoop V1 using the MapReduce framework, but that approach proved 

inefficient and totally unnatural for various reasons. The native Giraph implementation under 

YARN provides the user with an iterative processing model that is not directly available with 

MapReduce. Support for YARN has been present in Giraph since its own version 1.0 release. 

In addition, using the flexibility of YARN, the Giraph developers plan on implementing their 

own web interface to monitor job progress 

Hoya: HBase on YARN 

The Hoya project creates dynamic and elastic Apache HBase clusters on top of YARN. A 

client application creates the persistent configuration files, sets up the HBase cluster XML 

files, and then asks YARN to create an ApplicationMaster. YARN copies all files listed in the 

client’s application-launch request from HDFS into the local file system of the chosen server, 

and then executes the command to start the Hoya ApplicationMaster. Hoya also asks YARN 

for the number of containers matching the number of HBase region servers it needs.  

Dryad on YARN 

Similar to Apache Tez, Microsoft’s Dryad provides a DAG as the abstraction of execution 

flow. This framework is ported to run natively on YARN and is fully compatible with its 

non-YARN version. The code is written completely in native C++ and C# for worker nodes 

and uses a thin layer of Java within the application.  

Apache Spark 

Spark was initially developed for applications in which keeping data in memory improves 

performance, such as iterative algorithms, which are common in machine learning, and 

interactive data mining. Spark differs from classic MapReduce in two important ways. First, 

Spark holds intermediate results in memory, rather than writing them to disk. Second, Spark 
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supports more than just MapReduce functions; that is, it greatly expands the set of possible 

analyses that can be executed over HDFS data stores. It also provides APIs in Scala, Java, 

and Python. 

Since 2013, Spark has been running on production YARN clusters at Yahoo!. The advantage 

of porting and running Spark on top of YARN is the common resource management and a 

single underlying file system.  

Apache Storm 

Traditional MapReduce jobs are expected to eventually finish, but Apache Storm 

continuously processes messages until it is stopped. This framework is designed to process 

unbounded streams of data in real time. It can be used in any programming language. The 

basic Storm use-cases include real-time analytics, online machine learning, continuous 

computation, distributed RPC (remote procedure calls), ETL (extract, transform, and load), 

and more. Storm provides fast performance, is scalable, is fault tolerant, and provides 

processing guarantees. It works directly under YARN and takes advantage of the common 

data and resource management substrate.  

Apache REEF: Retainable Evaluator Execution Framework 

YARN’s flexibility sometimes requires significant effort on the part of application 

implementers. The steps involved in writing a custom application on YARN include building 

your own ApplicationMaster, performing client and container management, and handling 

aspects of fault tolerance, execution flow, coordination, and other concerns. The REEF 

project by Microsoft recognizes this challenge and factors out several components that are 

common to many applications, such as storage management, data caching, fault detection, 

and checkpoints. Framework designers can build their applications on top of REEF more 

easily than they can build those same applications directly on YARN, and can reuse these 

common services/libraries. REEF’s design makes it suitable for both MapReduce and DAG-

like executions as well as iterative and interactive computations.  

Hamster: Hadoop and MPI on the Same Cluster 

The Message Passing Interface (MPI) is widely used in high-performance computing (HPC). 

MPI is primarily a set of optimized message-passing library calls for C, C++, and Fortran that 

operate over popular server interconnects such as Ethernet and InfiniBand. Because users 

have full control over their YARN containers, there is no reason why MPI applications 

cannot run within a Hadoop cluster. The Hamster effort is a work-in-progress that provides a 

good discussion of the issues involved in mapping MPI to a YARN cluster. 
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Apache Flink: Scalable Batch and Stream Data Processing 

Apache Flink is a platform for efficient, distributed, general-purpose data processing. It 

features powerful programming abstractions in Java and Scala, a high-performance run time, 

and automatic program optimization. It also offers native support for iterations, incremental 

iterations, and programs consisting of large DAGs of operations. 

Flink is primarily a stream-processing framework that can look like a batch-processing 

environment. The immediate benefit from this approach is the ability to use the same 

algorithms for both streaming and batch modes (exactly as is done in Apache Spark). 

However, Flink can provide low-latency similar to that found in Apache Storm, but which is 

not available in Apache Spark. 

In addition, Flink has its own memory management system, separate from Java’s garbage 

collector. By managing memory explicitly, Flink almost eliminates the memory spikes often 

seen on Spark clusters.  

Apache Slider: Dynamic Application Management 

Apache Slider (incubating) is a YARN application to deploy existing distributed applications 

on YARN, monitor them, and make them larger or smaller as desired in real time. 

Applications can be stopped and then started; the distribution of the deployed application 

across the YARN cluster is persistent and allows for best-effort placement close to the 

previous locations. Applications that remember the previous placement of data (such as 

HBase) can exhibit fast startup times by capitalizing on this feature. 

YARN monitors the health of “YARN containers” that are hosting parts of the deployed 

applications. If a container fails, the Slider manager is notified. Slider then requests a new 

replacement container from the YARN ResourceManager. Some of Slider’s other features 

include user creation of on-demand applications, the ability to stop and restart applications as 

needed (preemption), and the ability to expand or reduce the number of application containers 

as needed. The Slider tool is a Java command-line application. 


