
Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 1

>>> 2+2

4

>>> 2+2

4

CHAPTER 1: PYTHON BASICS

1. Entering expressions into the interactive shell

2. The integer, floating-point and String Data Types

3. String concatenation and replication

4. Storing values in variables

5. Your first program

6. Dissecting your program

1.1. Entering expressions into the interactive shell

➢ Run the interactive shell by launching IDLE, which is installed with Python. On

Windows, open the Start menu, select All Programs ▸ Python 3.3, and then select

IDLE (Python GUI). On OS X, select Applications ▸ MacPython 3.3 ▸ IDLE. On

Ubuntu, open a new Terminal window and enter idle3.

➢ A window with the >>> prompt should appear; that‘s the interactive shell.

➢ The IDLE window should now show some text like this: Python 3.3.2

(v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit (AMD64)] on

win32

➢ Type "copyright", "credits" or "license()" for more information.

➢ In Python, 2 + 2 is called an expression, which is the most basic kind of programming

instruction in the language. Expressions consist of values (such as 2) and operators

(such as +), and they can always evaluate (that is, reduce) down to a single value.

That means you can use expressions anywhere in Python code that you could also use

a value.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 2

>>> 2+2

4

➢ In the previous example, 2 + 2 is evaluated down to a single value, 4. A single value

with no operators is also considered an expression, though it evaluates only to itself,

as shown here:

➢ The other operators which can be used are:

➢ The order of operations (also called precedence) of Python math operators is similar

to that of mathematics. The ** operator is evaluated first; the *, /, //, and % operators

are evaluated next, from left to right; and the + and - operators are evaluated last (also

from left to right). We can use parentheses to override the usual precedence if you

need to.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 3

➢ Due to wrong instructions errors occurs as shown below:

1.2 The integer, floating-point and String Data Types

➢ The expressions are just values combined with operators, and they always evaluate

down to a single value.

➢ A data type is a category for values, and every value belongs to exactly one data type.

-

➢ The integer (or int) data type indicates values that are whole numbers.

➢ Numbers with a decimal point, such as 3.14, are called floating-point numbers (or

floats).

➢ Note that even though the value 42 is an integer, the value 42.0 would be a floating-

point number.

➢ Python programs can also have text values called strings, or strs and surrounded in

single quote.

➢ The string with no characters, '', called a blank string.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 4

➢ If the error message SyntaxError: EOL while scanning string literal, then probably

the final single quote character at the end of the string is missing.

1.3 String concatenation and replication

➢ The meaning of an operator may change based on the data types of the values next to

it

➢ For example, + is the addition operator when it operates on two integers or floating-

point values.

➢ However, when + is used on two string values, it joins the strings as the string

concatenation operator.

➢ If we try to use the + operator on a string and an integer value, Python will not know

how to handle this, and it will display an error message.

➢ The * operator is used for multiplication when it operates on two integer or floating-

point values.

➢ But, when the * operator is used on one string value and one integer value; it becomes

the string replication operator.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 5

➢ The * operator can be used with only two numeric values (for multiplication) or one

string value and one integer value (for string replication). Otherwise, Python will just

display an error message.

1.4 Storing Values in Variables

➢ A variable is like a box in the computer‘s memory where you can store a single value.

➢ If we need to use variables later, then the result must be stored in variable.

Assignment Statements

➢ You‘ll store values in variables with an assignment statement.

➢ An assignment statement consists of a variable name, an equal sign (called the

assignment operator), and the value to be stored.

➢ Ex: spam = 42

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 6

Overwriting the variable

➢ A variable is initialized (or created) the first time a value is stored in it ❶.

➢ After that, you can use it in expressions with other variables and values ❷.

➢ When a variable is assigned a new value ③, the old value is forgotten, which is why

spam evaluated to 42 instead of 40 at the end of the example.

One more example

 Variable names

We can name a variable anything as long as it obeys the following three rules:

1. It can be only one word.

2. It can use only letters, numbers, and the underscore (_) character.

3. It can‘t begin with a number.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 7

➢ Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM are

four different variables.

➢ This book uses camelcase for variable names instead of underscores; that is, variables

look LikeThis instead of looking_like_this.

➢ A good variable name describes the data it contains.

1.5 Your First Program

➢ The file editor is similar to text editors such as Notepad or TextMate, but it has some

specific features for typing in source code.

➢ The interactive shell window will always be the one with the >>> prompt.

➢ The file editor window will not have the >>> prompt.

➢ The extension for python program is .py Example program:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 8

➢ The output looks like:

1.6 Dissecting Your Program

Comments

➢ The following line is called a comment.

➢ Python ignores comments, and we can use them to write notes or remind ourselves

what the code is trying to do.

➢ Any text for the rest of the line following a hash mark (#) is part of a comment.

➢ Sometimes, programmers will put a # in front of a line of code to temporarily remove

it while testing a program. This is called commenting out code, and it can be useful

when you‘re trying to figure out why a program doesn‘t work.

➢ Python also ignores the blank line after the comment.

The print() Function

➢ The print() function displays the string value inside the parentheses on the screen.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 9

➢ The line print('Hello world!') means ―Print out the text in the string 'Hello world!'.‖

➢ When Python executes this line, you say that Python is calling the print() function

and the string value is being passed to the function.

➢ A value that is passed to a function call is an argument.

➢ The quotes are not printed to the screen. They just mark where the string begins and

ends; they are not part of the string value.

The Input Function

➢ The input() function waits for the user to type some text on the keyboard and press

ENTER

➢ This function call evaluates to a string equal to the user‘s text, and the previous line of

code assigns the myName variable to this string value.

➢ We can think of the input() function call as an expression that evaluates to whatever

string the user typed in. If the user entered 'Al', then the expression would evaluate to

myName = 'Al'.

Printing the User’s Name

➢ The following call to print() actually contains the expression 'It is good to meet you, ' +

myName between the parentheses.

➢ Remember that expressions can always evaluate to a single value.

➢ If 'Al' is the value stored in myName on the previous line, then this expression

evaluates to 'It is good to meet you, Al'.

➢ This single string value is then passed to print(), which prints it on the screen.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 10

the function evaluates to the integer value of the number of characters in that string.

➢ In the interactive shell:

screen.

The len() Function

➢

➢

➢ Possible errors: The print() function isn‘t causing that error, but rather it‘s the

expression you tried to pass to print().

➢

ungrammatical in Python.

We can‘t add an integer to a string because this is together or concatenate two strings.

Python gives an error because we can use the + operator only to add two integers

len(myName) evaluates to an integer. It is then passed to print() to be displayed on the

We can pass the len() function a string value (or a variable containing a string), and

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 11

Because str(29) evaluates to '29',

need to get the value '29', which is the string form of 29.

version of it, as follows:

The str(), int() and float() Functions

➢

➢

➢ the expression 'I am ' + str(29) + ' years old.'

evaluates to 'I am ' + '29' + ' years old.', which in turn evaluates to 'I am 29 years old.'.

This is the value that is passed to the print() function.

➢ The str(), int(), and float() functions will evaluate to the string, integer, and floating-

point forms of the value you pass, respectively.

➢

Converting some values in the interactive shell with these functions:

The str() function can be passed an integer value and will evaluate to a string value

If we want to concatenate an integer such as 29 with a string to pass to print(), we‘ll

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 12

to use in some mathematics.

number.

➢ The previous examples call the str(), int(), and float() functions and pass them values

of the other data types to obtain a string, integer, or floating-point form of those

values.

➢ The str() function is handy when you have an integer or float that you want to

concatenate to a string.

➢

➢ For example,

➢ Enter spam = input() into the interactive shell and enter 101 when it waits for your

text.

➢ The value stored inside spam isn‘t the integer 101 but the string '101'.

➢ If we want to do math using the value in spam, use the int() function to get the integer

form of spam and then store this as the new value in spam.

➢ Now we should be able to treat the spam variable as an integer instead of a string.

the input() function always returns a string, even if the user enters a

The int() function is also helpful if we have a number as a string value that you want

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 13

➢ Note that if we pass a value to int() that it cannot evaluate as an integer, Python will

display an error message.

➢ The int() function is also useful if we need to round a floating-point number down. If

we want to round a floating-point number up, just add 1 to it afterward.

➢ In your program, we used the int() and str() functions in the last three lines to get a

value of the appropriate data type for the code.

➢ The myAge variable contains the value returned from input().

➢ Because the input() function always returns a string (even if the user typed in a

number), we can use the int(myAge) code to return an integer value of the string in

myAge.

➢ This integer value is then added to 1 in the expression int(myAge) + 1.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 14

Text and Number Equivalence

➢ The result of this addition is passed to the str() function: str(int(myAge) + 1).

➢ The string value returned is then concatenated with the strings 'You will be ' and ' in a

year.' to evaluate to one large string value.

➢ This large string is finally passed to print() to be displayed on the screen.

Another input:

➢ Let‘s say the user enters the string '4' for myAge.

➢ The string '4' is converted to an integer, so you can add one to it. The result is 5.

➢ The str() function converts the result back to a string, so we can concatenate it with the

second string, 'in a year.', to create the final message. These evaluation steps would look

something like below:

➢ Although the string value of a number is considered a completely different value from

the integer or floating-point version, an integer can be equal to a floating point.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 15

1. Boolean Values

CHAPTER 2: FLOW CONTROL

2. Comparison Operators

3. Boolean Operators

4. Mixing Boolean and Comparison Operators

5. Elements of Flow Control

6. Program Execution

7. Flow Control Statements

8. Importing Modules

9. Ending a Program Early with sys.exit()

Introduction

➢ Flow control statements can decide which Python instructions to execute under which

conditions.

➢ These flow control statements directly correspond to the symbols in a flowchart

➢ In a flowchart, there is usually more than one way to go from the start to the end.

➢ Flowcharts represent these branching points with diamonds, while the other steps are

represented with rectangles.

➢ The starting and ending steps are represented with rounded rectangles.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 16

2.1 Boolean Values

➢ The Boolean data type has only two values: True and False.

➢ When typed as Python code, the Boolean values True and False lack the quotes you

place around strings, and they always start with a capital T or F, with the rest of the

word in lowercase.

➢ Examples:

➢ Like any other value, Boolean values are used in expressions and can be stored in

variables ❶. If we don‘t use the proper case ❷ or we try to use True and False for

variable names ❸, Python will give you an error message.

2.2 Comparison Operators

➢ Comparison operators compare two values and evaluate down to a single Boolean

value. Table 2-1 lists the comparison operators.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 17

➢ These operators evaluate to True or False depending on the values we give them.

➢ The == and != operators can actually work with values of any data type.

➢ Note that an integer or floating-point value will always be unequal to a string value.

The expression 42 == '42' ❶ evaluates to False because Python considers the integer

42 to be different from the string '42'.

➢ ➢ The <, >, <=, and >= operators, on the other hand, work properly only with

integer and floating-point values.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 18

The Difference Between the == and = Operators

➢ The == operator (equal to) asks whether two values are the same as each other.

➢ ➢ The = operator (assignment) puts the value on the right into the variable on the

left.

➢ ➢ We often use comparison operators to compare a variable‘s value to some other

value, like in the eggCount <= 42 ❶ and myAge >= 10 ❷ examples.

2.3 Boolean Operators

➢ The three Boolean operators (and, or, and not) are used to compare Boolean values.

Binary Boolean Operators

➢ The and and or operators always take two Boolean values (or expressions), so they‘re

considered binary Operators.

and operator: The and operator evaluates an expression to True if both Boolean values

are True; otherwise, it evaluates to False.

or operator: The or operator valuates an expression to True if either of the two Boolean

values is True. If both are False, it evaluates to False.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 19

not operator: The not operator operates on only one Boolean value (or expression). The not

operator simply evaluates to the opposite Boolean value. Much like using double negatives in

speech and writing, you can nest not operators ❶, though there‘s never not no reason to do

this in real programs.

2.4 Mixing Boolean and Comparison Operators

➢ Since the comparison operators evaluate to Boolean values, we can use them in

expressions with the Boolean operators. Ex:

➢ The computer will evaluate the left expression first, and then it will evaluate the right

expression. When it knows the Boolean value for each, it will then evaluate the whole

expression down to one Boolean value. You can think of the computer‘s evaluation

process for (4 < 5) and (5 < 6) as shown in Figure below:

➢ We can also use multiple Boolean operators in an expression, along with the comparison

operators.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 20

➢ The Boolean operators have an order of operations just like the math operators do. After

any math and comparison operators evaluate, Python evaluates the not operators first,

then the and operators, and then the or operators.

2.4 Elements of Flow Control

➢ Flow control statements often start with a part called the condition, and all are followed

by a block of code called the clause.

Conditions:

➢ The Boolean expressions you‘ve seen so far could all be considered conditions, which

are the same thing as expressions; condition is just a more specific name in the

context of flow control statements.

➢ Conditions always evaluate down to a Boolean value, True or False.

➢ A flow control statement decides what to do based on whether its condition is True or

False, and almost every flow control statement uses a condition.

Blocks of Code:

➢ Lines of Python code can be grouped together in blocks. There are three rules for

blocks.

1. Blocks begin when the indentation increases.

2. Blocks can contain other blocks.

3. Blocks end when the indentation decreases to zero or to a containing block‘s

indentation.

➢ The first block of code ❶ starts at the line print('Hello Mary') and contains all the lines

after it. Inside this block is another block ❷, which has only a single line in it:

print('Access Granted.'). The third block ❸ is also one line long: print('Wrong

password.').

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 21

Program Execution:

➢ The program execution (or simply, execution) is a term for the current instruction

being executed.

Flow Control Statements:

1. if Statements:

➢ The most common type of flow control statement is the if statement.

➢ An if statement‘s clause (that is, the block following the if statement) will execute if

the statement‘s condition is True. The clause is skipped if the condition is False.

➢ In plain English, an if statement could be read as, ―If this condition is true, execute the

code in the clause.‖ In Python, an if statement consists of the following:

1. The if keyword

2. A condition (that is, an expression that evaluates to True or False)

3. A colon

4. Starting on the next line, an indented block of code (called the if clause)

➢ Example:

➢ Flowchart:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 22

2. else Statements:

➢ An if clause can optionally be followed by an else statement. The else clause is

executed only when the if statement‘s condition is False.

➢ In plain English, an else statement could be read as, ―If this condition is true, execute

this code. Or else, execute that code.‖

➢ An else statement doesn‘t have a condition, and in code, an else statement always

consists of the following:

1. The else keyword

2. A colon

3. Starting on the next line, an indented block of code (called the else clause)

➢ Example:

➢ Flowchart:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 23

3. elif Statements:

➢ While only one of the if or else clauses will execute, we may have a case where we

want one of many possible clauses to execute.

➢ The elif statement is an ―else if‖ statement that always follows an if or another elif

statement.

➢ It provides another condition that is checked only if all of the previous conditions

were False.

➢ In code, an elif statement always consists of the following:

1. The elif keyword

2. A condition (that is, an expression that evaluates to True or False)

3. A colon

4. Starting on the next line, an indented block of code (called the elif clause)

➢ Example:

➢ Flowchart:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 24

➢ When there is a chain of elif statements, only one or none of the clauses will be

executed.

➢ Example:

➢ Flowchart:

➢ The order of the elif statements does matter, however. Let‘s see by rearranging the

previous code.

➢ Say the age variable contains the value 3000 before this code is executed.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 25

➢ We might expect the code to print the string 'Unlike you, Alice is not an undead,

immortal vampire.'.

➢ However, because the age > 100 condition is True (after all, 3000 is greater than 100)

❶, the string 'You are not Alice, grannie.' is printed, and the rest of the elif

statements are automatically skipped.

➢ Remember, at most only one of the clauses will be executed, and for elif statements,

the order matters!

➢ Flowchart → (1)

➢ Optionally, we can have an else statement after the last elif statement.

➢ In that case, it is guaranteed that at least one (and only one) of the clauses will be

executed.

➢ If the conditions in every if and elif statement are False, then the else clause is

executed.

➢ In plain English, this type of flow control structure would be, ―If the first condition is

true, do this. Else, if the second condition is true, do that. Otherwise, do something

else.‖

➢ Example:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 26

➢ Flowchart → (2)

4. while loop Statements:

➢ We can make a block of code execute over and over again with a while statement

➢ The code in a while clause will be executed as long as the while statement‘s condition

is True.

➢ In code, a while statement always consists of the following:

1. The while keyword

2. A condition (that is, an expression that evaluates to True or False.

3. A colon

4. Starting on the next line, an indented block of code (called the while clause)

➢ We can see that a while statement looks similar to an if statement. The difference is

in how they behave. At the end of an if clause, the program execution continues after the if

statement.

➢ But, at the end of a while clause, the program execution jumps back to the start of

the while statement. The while clause is often called the while loop or just the loop.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 27

➢ Example:

Using if statement

Using while statement

➢ These statements are similar—both if and while check the value of spam, and if it‘s

less than five, they print a message.

➢ But when we run these two code snippets, for the if statement, the output is simply

"Hello, world."

➢ But for the while statement, it‘s "Hello, world." repeated five times!

➢ Flowchart:

Using if Statement

Using While Statement

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 28

➢ In the while loop, the condition is always checked at the start of each iteration (that is,

each time the loop is executed).

➢ If the condition is True, then the clause is executed, and afterward, the condition is

checked again.

➢ The first time the condition is found to be False, the while clause is skipped.

An annoying while loop:

➢ Here‘s a small example program that will keep asking to type, literally, your name.

Example Program Output

➢ First, the program sets the name variable ❶ to an empty string.

➢ This is so that the name != 'your name' condition will evaluate to True and the

program execution will enter the while loop‘s clause ❷.

➢ The code inside this clause asks the user to type their name, which is assigned to the

name variable ❸.

➢ Since this is the last line of the block, the execution moves back to the start of the

while loop and reevaluates the condition.

➢ If the value in name is not equal to the string 'your name', then the condition is True,

and the execution enters the while clause again.

➢ But once the user types your name, the condition of the while loop will be 'your name'

!= 'your name', which evaluates to False.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 29

clause early.

clause

➢ The condition is now False, and instead of the program execution reentering the while

loop‘s clause, it skips past it and continues running the rest of the program ❹.

➢ Flowchart:

5. break Statements:

➢

➢

➢

➢ Example:

In code, a break statement simply contains the break keyword.

If the execution reaches a break statement, it immediately exits the while loop‘s

There is a shortcut to getting the program execution to break out of a while loop‘s

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 30

True. (The expression True, after all, always evaluates down to the value True.)

statement is executed. (An infinite loop that never exits is a common programming

bug.)

executed ❸ to check whether name is equal to your name.

of the loop to print('Thank you!') ❺.

➢

➢

➢

➢

➢

➢ Otherwise, the if statement‘s clause with the break statement is skipped, which puts

the execution at the end of the while loop.

➢ At this point, the program execution jumps back to the start of the while statement ❶

to recheck the condition. Since this condition is merely the True Boolean value, the

execution enters the loop to ask the user to type your name again.

➢ Flowchart:

Just like before, this program asks the user to type your name ❷.

The first line ❶ creates an infinite loop; it is a while loop whose condition is always

If this condition is True, the break statement is run ❹, and the execution moves out

Now, however, while the execution is still inside the while loop, an if statement gets

The program execution will always enter the loop and will exit it only when a break

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 31

immediately jumps back to the start of the loop and reevaluates the loop‘s condition.

program execution to jump back to the start of the loop.

condition is simply the value True. Once they make it past that if statement, the user is

asked for a password ❸.

execution jumps out of the while loop to print Access granted ❺.

back to the start of the loop.

6.

➢

➢

➢ Example and Output:

➢ ,

➢

➢

➢

➢ Flowchart:

If the password entered is swordfish, then the break statement ❹ is run, and the

Otherwise, the execution continues to the end of the while loop, where it then jumps

When it reevaluates the condition, the execution will always enter the loop, since the

When the program execution reaches a continue statement, the program execution

Like break statements, continue statements are used inside loops.

Continue statement

If the user enters any name besides Joe ❶ the continue statement ❷ causes the

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 32

➢ There are some values in other data types that conditions will consider equivalent to

True and False.

➢ When used in conditions, 0, 0.0, and '' (the empty string) are considered False, while

all other values are considered True.

➢ Example:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 33

7. for loops and the range() function:

➢ If we want to execute a block of code only a certain number of times then we can do

this with a for loop statement and the range() function.

➢ In code, a for statement looks something like for i in range(5): and always includes

the following:

1. The for keyword

2. A variable name

3. The in keyword

4. A call to the range() method with up to three integers passed to it

5. A colon

6. Starting on the next line, an indented block of code (called the for clause)

➢ Example and output:

Example Output

➢ The code in the for loop‘s clause is run five times.

➢ The first time it is run, the variable i is set to 0.

➢ The print() call in the clause will print Jimmy Five Times (0).

➢ After Python finishes an iteration through all the code inside the for loop‘s clause, the

execution goes back to the top of the loop, and the for statement increments i by one.

➢ This is why range(5) results in five iterations through the clause, with i being set to 0,

then 1, then 2, then 3, and then 4.

➢ The variable i will go up to, but will not include, the integer passed to range().

➢ Flowchart:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 34

➢ Example 2:

➢ The result should be 5,050. When the program first starts, the total variable is set to 0

❶.

➢ The for loop ❷ then executes total = total + num ❸ 100 times.

➢ By the time the loop has finished all of its 100 iterations, every integer from 0 to 100

will have been added to total. At this point, total is printed to the screen ❹.

An equivalent while loop: For the first example of for loop.

8. The Starting, Stopping, and Stepping Arguments to range()

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 35

➢ Some functions can be called with multiple arguments separated by a comma, and

range() is one of them.

➢ This lets us change the integer passed to range() to follow any sequence of integers,

including starting at a number other than zero.

➢ The first argument will be where the for loop‘s variable starts, and the second argument

will be up to, but not including, the number to stop at.

➢ The range() function can also be called with three arguments. The first two arguments

will be the start and stop values, and the third will be the step argument. The step is

the amount that the variable is increased by after each iteration.

➢ So calling range(0, 10, 2) will count from zero to eight by intervals of two.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 36

➢ The range() function is flexible in the sequence of numbers it produces for for loops.

We can even use a negative number for the step argument to make the for loop count

down instead of up.

➢ Running a for loop to print i with range(5, -1, -1) should print from five down to zero.

2.5 Importing Modules

➢ All Python programs can call a basic set of functions called built-in functions,

including the print(), input(), and len() functions.

➢ Python also comes with a set of modules called the standard library.

➢ Each module is a Python program that contains a related group of functions that can

be embedded in your programs.

➢ For example, the math module has mathematics-related functions, the random module

has random number–related functions, and so on.

➢ Before we can use the functions in a module, we must import the module with an

import statement. In code, an import statement consists of the following:

1. The import keyword

2. The name of the module

3. Optionally, more module names, as long as they are separated by commas

➢ Once we import a module, we can use all the functions of that module.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 37

➢ Example with output:

➢ The random.randint() function call evaluates to a random integer value between the

two integers that you pass it.

➢ Since randint() is in the random module, we must first type random. in front of the

function name to tell Python to look for this function inside the random module.

➢ Here‘s an example of an import statement that imports four different modules:

➢ Now we can use any of the functions in these four modules.

from import Statements

➢ An alternative form of the import statement is composed of the from keyword,

followed by the module name, the import keyword, and a star; for example, from

random import *.

➢ With this form of import statement, calls to functions in random will not need the

random prefix.

➢ However, using the full name makes for more readable code, so it is better to use the

normal form of the import statement.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 38

2.6 Ending a Program Early with sys.exit()

➢ The last flow control concept is how to terminate the program. This always happens if

the program execution reaches the bottom of the instructions.

➢ However, we can cause the program to terminate, or exit, by calling the sys.exit()

function. Since this function is in the sys module, we have to import sys before your

program can use it.

➢ This program has an infinite loop with no break statement inside. The only way this

program will end is if the user enters exit, causing sys.exit() to be called.

➢ When response is equal to exit, the program ends.

➢ Since the response variable is set by the input() function, the user must enter exit in

order to stop the program.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 39

CHAPTER 3: FUNCTIONS

1.

2.

3. The None Value

4. Keyword Arguments and print()

5. Local and Global Scope

6. The global Statement

7. Exception Handling

8. A Short Program: Guess the Number

Introduction

➢ A function is like a mini-program within a program.

➢ Example:

➢ The first line is a def statement ❶, which defines a function named hello().

➢ The code in the block that follows the def statement ❷ is the body of the function.

This code is executed when the function is called, not when the function is first

defined.

➢ The hello() lines after the function ❸ are function calls.

➢ In code, a function call is just the function‘s name followed by parentheses, possibly

with some number of arguments in between the parentheses.

➢ When the program execution reaches these calls, it will jump to the top line in the

function and begin executing the code there.

➢ When it reaches the end of the function, the execution returns to the line that called

the function and continues moving through the code as before.

➢ Since this program calls hello() three times, the code in the hello() function is

executed three times. When we run this program, the output looks like this:

Return Values and return Statements

def Statements with Parameters

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 40

➢ We can also define our own functions that accept arguments.

➢ A major purpose of functions is to group code that gets executed multiple times.

Without a function defined, we would have to copy and paste this code each time, and

the program would look like this:

3.1 def Statements with Parameters

➢ When we call the print() or len() function, we pass in values, called arguments in this

context, by typing them between the parentheses.

➢ Example with output:

➢ The definition of the hello() function in this program has a parameter called name ❶.

➢ A parameter is a variable that an argument is stored in when a function is called. The

first time the hello() function is called, it‘s with the argument 'Alice' ❸.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 41

➢ The program execution enters the function, and the variable name is automatically set

to 'Alice', which is what gets printed by the print() statement ❷.

➢ One special thing to note about parameters is that the value stored in a parameter is

forgotten when the function returns.

3.2 Return Values and Return Statements

➢ The value that a function call evaluates to is called the return value of the function.

➢ Ex: len(‗Hello‘) → Return values is 5

➢ When creating a function using the def statement, we can specify what the return

value should be with a return statement.

➢ A return statement consists of the following:

1. The return keyword

2. The value or expression that the function should return.

➢ When an expression is used with a return statement, the return value is what this

expression evaluates to.

➢ For example, the following program defines a function that returns a different string

depending on what number it is passed as an argument.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 42

➢ When this program starts, Python first imports the random module ❶.

➢ Then the getAnswer() function is defined ❷. Because the function is being defined

(and not called), the execution skips over the code in it.

➢ Next, the random.randint() function is called with two arguments, 1 and 9 ❹.

➢ It evaluates to a random integer between 1 and 9 (including 1 and 9 themselves), and

this value is stored in a variable named r.

➢ The getAnswer() function is called with r as the argument ❺.

➢ The program execution moves to the top of the getAnswer() function ❸, and the

value r is stored in a parameter named answerNumber.

➢ Then, depending on this value in answerNumber, the function returns one of many

possible string values. The program execution returns to the line at the bottom of the

program that originally called getAnswer() ❺.

➢ The returned string is assigned to a variable named fortune, which then gets passed to

a print() call ❻ and is printed to the screen.

➢ Note that since we can pass return values as an argument to another function call, we

could shorten these three lines into single line as follows:

3.3 The None Value

➢ In Python there is a value called None, which represents the absence of a value.

➢ None is the only value of the NoneType data type.

➢ This value-without-a-value can be helpful when we need to store something that

won‘t be confused for a real value in a variable.

➢ One place where None is used is as the return value of print().

➢ The print() function displays text on the screen, but it doesn‘t need to return anything

in the same way len() or input() does. But since all function calls need to evaluate to a

return value, print() returns None.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 43

after 'Hello'. Instead, the blank string is printed. This is useful if we need to disable

the newline that gets added to the end of every print() function call.

3.3 Keyword Arguments and print()

➢ Most arguments are identified by their position in the function call.

➢ For example, random.randint(1, 10) is different from random.randint(10, 1).

➢ The function call random.randint(1, 10) will return a random integer between 1 and

10, because the first argument is the low end of the range and the second argument is

the high end while random.randint(10, 1) causes an error.

➢ However, keyword arguments are identified by the keyword put before them in the

function call.

➢ Keyword arguments are often used for optional parameters.

➢ For example, the print() function has the optional parameters end and sep to specify

what should be printed at the end of its arguments and between its arguments

(separating them), respectively.

➢ The two strings appear on separate lines because the print() function automatically

adds a newline character to the end of the string it is passed.

➢ However, we can set the end keyword argument to change this to a different string.

➢ For example, if the program were this:

➢

➢ Similarly, when we pass multiple string values to print(), the function will

automatically separate them with a single space.

➢ But we could replace the default separating string by passing the sep keyword argument

The output is printed on a single line because there is no longer a new-line printed

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 44

function‘s local scope.

exists in the global scope is called a global variable.

function exist within the local scope. When the function returns, the local scope is

destroyed, and these variables are forgotten.

1. Code in the global scope cannot use any local variables.

That is, there can be a local variable named spam and a global variable also named

spam.

.

3.4 Local and Global Scope

➢

➢

➢

➢ A variable must be one or the other; it cannot be both local and global.

➢ When a scope is destroyed, all the values stored in the scope‘s variables are forgotten.

➢ There is only one global scope, and it is created when your program begins. When

your program terminates, the global scope is destroyed, and all its variables are

forgotten.

➢ A

➢ Scopes matter for several reasons:

2.

3.

1.

Local Variables Cannot Be Used in the Global Scope

➢ Consider this program, which will cause an error when you run it:

Example Output

We can use the same name for different variables if they are in different scopes.

Code in a function‘s local scope cannot use variables in any other local scope.

However, a local scope can access global variables.

local scope is created whenever a function is called. Any variables assigned in this

A variable that exists in a local scope is called a local variable, while a variable that

Variables that are assigned outside all functions are said to exist in the global scope.

Parameters and variables that are assigned in a called function are said to exist in that

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 45

when spam() is called.

there is no longer a variable named eggs.

is called from another function. Consider this program:

created.

local scopes can exist at the same time.

eggs—which is different from the one in spam()‘s local scope—is also created ❹ and

set to 0.

execution continues in the spam() function to print the value of eggs ❸, and since the

local scope for the call to spam() still exists here, the eggs variable is set to 99.

➢

➢

Local Scopes Cannot Use Variables in Other Local Scopes

➢

➢

➢

➢

➢

➢

The local variable eggs ❶ is set to 99.

Then the bacon() function is called ❷, and a second local scope is created. Multiple

When the program starts, the spam() function is called ❺, and a local scope is

When bacon() returns, the local scope for that call is destroyed. The program

In this new local scope, the local variable ham is set to 101, and a local variable

A new local scope is created whenever a function is called, including when a function

Once the program execution returns from spam, that local scope is destroyed, and

The error happens because the eggs variable exists only in the local scope created

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 46

spam() function, when eggs is used in spam(), Python considers it a reference to the

global variable eggs. This is why 42 is printed when the previous program is run.

Global Variables Can Be Read from a Local Scope

➢ Consider the following program:

➢

Local and Global Variables with the Same Name

➢ To simplify, avoid using local variables that have the same name as a global variable

or another local variable.

➢ But technically, it‘s perfectly legal to do so.

Example Output

➢ There are actually three different variables in this program, but confusingly they are

all named eggs. The variables are as follows:

➢ ❶ A variable named eggs that exists in a local scope when spam() is called.

➢ ❷ A variable named eggs that exists in a local scope when bacon() is called.

➢ ❸ A variable named eggs that exists in the global scope.

➢ Since these three separate variables all have the same name, it can be confusing to

keep track of which one is being used at any given time. This is why we should avoid

using the same variable name in different scopes.

Since there is no parameter named eggs or any code that assigns eggs a value in the

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 47

statement.

❷, this assignment is done to the globally scoped eggs. No local eggs variable is

created.

3.5 The Global Statement

➢

➢ If we have a line such as global eggs at the top of a function, it tells Python, ―In this

function, eggs refers to the global variable, so don‘t create a local variable with this

name.‖

➢ For example:

Program Output

➢

➢

➢ If a variable is being used in the global scope (that is, outside of all functions), then it

is always a global variable.

➢ If there is a global statement for that variable in a function, it is a global variable.

➢ Otherwise, if the variable is used in an assignment statement in the function, it is a

local variable.

➢ But if the variable is not used in an assignment statement, it is a global variable.

Because eggs is declared global at the top of spam() ❶, when eggs is set to 'spam'

There are four rules to tell whether a variable is in a local scope or global scope:

If we need to modify a global variable from within a function, use the global

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 48

statement for eggs at the beginning of the function ❶.

that function ❷.

global statement for it in that function

way that the code in a function can use a local variable named eggs and then later in

that same function use the global eggs variable.

➢ Example:

Program Output

➢

➢

➢

➢

Note
➢ If we ever want to modify the value stored in a global variable from in a function, we

must use a global statement on that variable.

➢ If we try to use a local variable in a function before we assign a value to it, as in the

following program, Python will give you an error.

 Program Output

In ham() ❸, eggs is the global variable, because there is no assignment statement or

In a function, a variable will either always be global or always be local. There‘s no

In bacon(), eggs is a local variable, because there‘s an assignment statement for it in

In the spam() function, eggs is the global eggs variable, because there‘s a global

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 49

detect errors, handle them, and then continue to run.

line number given in the error message, we know that the return statement in spam()

is causing an error.

execution moves to the start of a following except clause if an error happens.

contain code to handle what happens when this error occurs.

➢ This error happens because Python sees that there is an assignment statement for eggs

in the spam() function ❶ and therefore considers eggs to be local.

➢ But because print(eggs) is executed before eggs is assigned anything, the local

variable eggs doesn‘t exist. Python will not fall back to using global eggs variable ❷.

3.6 Exception Handling

➢

➢ For example,

Program Output

➢

➢

➢

➢

Program Output

We can put the previous divide-by-zero code in a try clause and have an except clause

The code that could potentially have an error is put in a try clause. The program

Errors can be handled with try and except statements.

A ZeroDivisionError happens whenever we try to divide a number by zero. From the

If we don‘t want to crash the program due to errors instead we want the program to

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 50

Consider the following program, which instead has the spam() calls in the try block:

look something like this:

➢

Program Output

➢ The reason print(spam(1)) is never executed is because once the execution jumps to

the code in the except clause, it does not return to the try clause. Instead, it just

continues moving down as normal.

3.7 A Short program: Guess the Number

➢

This is a simple ―guess the number‖ game. When we run this program, the output will

Note that any errors that occur in function calls in a try block will also be caught.

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 51

➢

➢ Let‘s look at this code line by line, starting at the top.

➢ First, a comment at the top of the code explains what the program does.

➢ Then, the program imports the random module so that it can use the random.randint()

function to generate a number for the user to guess.

➢ The return value, a random integer between 1 and 20, is stored in the variable

secretNumber.

Code for the above program is:

Introduction to Python Programming (BPLCK105B) Module 1

Manjusha, Asst Prof., Dept of CSE, SVIT Page 52

➢ The program tells the player that it has come up with a secret number and will give

the player six chances to guess it.

➢ The code that lets the player enter a guess and checks that guess is in a for loop that

will loop at most six times.

➢ The first thing that happens in the loop is that the player types in a guess.

➢ Since input() returns a string, its return value is passed straight into int(), which

translates the string into an integer value. This gets stored in a variable named guess.

➢ These few lines of code check to see whether the guess is less than or greater than the

secret number. In either case, a hint is printed to the screen.

➢ If the guess is neither higher nor lower than the secret number, then it must be equal

to the secret number, in which case you want the program execution to break out of

the for loop.

➢ After the for loop, the previous if...else statement checks whether the player has

correctly guessed the number and prints an appropriate message to the screen.

➢ In both cases, the program displays a variable that contains an integer value

(guessesTaken and secretNumber).

➢ Since it must concatenate these integer values to strings, it passes these variables to

the str() function, which returns the string value form of these integers.

➢ Now these strings can be concatenated with the + operators before finally being

passed to the print() function call.

	CHAPTER 1: PYTHON BASICS
	1.1. Entering expressions into the interactive shell
	1.2 The integer, floating-point and String Data Types
	1.3 String concatenation and replication
	1.4 Storing Values in Variables
	Assignment Statements
	Overwriting the variable
	One more example
	1.5 Your First Program
	1.6 Dissecting Your Program
	The print() Function
	The Input Function
	Printing the User’s Name
	The len() Function
	The str(), int() and float() Functions

	CHAPTER 2: FLOW CONTROL
	Introduction
	2.1 Boolean Values
	2.2 Comparison Operators
	The Difference Between the == and = Operators

	2.4 Mixing Boolean and Comparison Operators
	2.4 Elements of Flow Control
	Conditions:
	Program Execution:
	An annoying while loop:
	5. break Statements:
	8. The Starting, Stopping, and Stepping Arguments to range()
	from import Statements

	2.6 Ending a Program Early with sys.exit()

	CHAPTER 3: FUNCTIONS
	Introduction
	3.1 def Statements with Parameters
	3.2 Return Values and Return Statements
	3.3 The None Value
	3.3 Keyword Arguments and print()
	3.4 Local and Global Scope
	Local Variables Cannot Be Used in the Global Scope
	Local Scopes Cannot Use Variables in Other Local Scopes
	Local and Global Variables with the Same Name

	3.5 The Global Statement
	Note

	3.6 Exception Handling
	3.7 A Short program: Guess the Number

