
DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 30

MODULE 2

The Relational Data Model and Relational Database Constraints

and Relational Algebra

2.1 Relational Model Concepts

 Domain: A (usually named) set/universe of atomic values, where by "atomic" we mean

simply that, from the point of view of the database, each value in the domain is indivisible
(i.e., cannot be broken down into component parts).



Examples of domains (some taken from page 147):

o USA_phone_number: string of digits of length
ten o SSN: string of digits of length nine
o Name: string of characters beginning with an upper case letter
o GPA: a real number between 0.0 and 4.0
o Sex: a member of the set { female, male }
o Dept_Code: a member of the set { CMPS, MATH, ENGL, PHYS, PSYC, ... }

These are all logical descriptions of domains. For implementation purposes, it is necessary

to provide descriptions of domains in terms of concrete data types (or formats) that are

provided by the DBMS (such as String, int, boolean), in a manner analogous to how
programming languages have intrinsic data types.

 Attribute: the name of the role played by some value (coming from some domain) in the

context of a relational schema. The domain of attribute A is denoted dom(A).
 Tuple: A tuple is a mapping from attributes to values drawn from the respective domains

of those attributes. A tuple is intended to describe some entity (or relationship between

entities) in the miniworld.



As an example, a tuple for a PERSON entity might be



{ Name --> "Rumpelstiltskin", Sex --> Male, IQ --> 143 }



 Relation: A (named) set of tuples all of the same form (i.e., having the same set of
attributes). The term table is a loose synonym. (Some database purists would argue that a
table is "only" a physical manifestation of a relation.)

 Relational Schema: used for describing (the structure of) a relation. E.g., R(A1, A2, ..., An)

says that R is a relation with attributes A1, ... An. The degree of a relation is the number of
attributes it has, here n.



Example: STUDENT(Name, SSN, Address)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 31

(See Figure 5.1, page 149, for an example of a STUDENT relation/table having several
tuples/rows.)

One would think that a "complete" relational schema would also specify the domain of
each attribute.

 Relational Database: A collection of relations, each one consistent with its specified

relational schema.

2.1.2 Characteristics of Relations

Ordering of Tuples: A relation is a set of tuples; hence, there is no order associated with them.

That is, it makes no sense to refer to, for example, the 5th tuple in a relation. When a relation is

depicted as a table, the tuples are necessarily listed in some order, of course, but you should attach

no significance to that order. Similarly, when tuples are represented on a storage device, they must

be organized in some fashion, and it may be advantageous, from a performance standpoint, to

organize them in a way that depends upon their content.

Ordering of Attributes: A tuple is best viewed as a mapping from its attributes (i.e., the names

we give to the roles played by the values comprising the tuple) to the corresponding values. Hence,

the order in which the attributes are listed in a table is irrelevant. (Note that, unfortunately, the set

theoretic operations in relational algebra (at least how E&N define them) make implicit use of the

order of the attributes. Hence, E&N view attributes as being arranged as a sequence rather than a

set.)

Values of Attributes: For a relation to be in First Normal Form, each of its attribute domains

must consist of atomic (neither composite nor multi-valued) values. Much of the theory underlying

the relational model was based upon this assumption. Chapter 10 addresses the issue of including

non-atomic values in domains. (Note that in the latest edition of C.J. Date's book, he explicitly
argues against this idea, admitting that he has been mistaken in the past.)

The Null value: used for don't know, not applicable.

Interpretation of a Relation: Each relation can be viewed as a predicate and each tuple in that
relation can be viewed as an assertion for which that predicate is satisfied (i.e., has value true) for

the combination of values in it. In other words, each tuple represents a fact. Example (see Figure

5.1): The first tuple listed means: There exists a student having name Benjamin Bayer, having SSN
305-61-2435, having age 19, etc.

Keep in mind that some relations represent facts about entities (e.g., students) whereas others
represent facts about relationships (between entities). (e.g., students and course sections).

The closed world assumption states that the only true facts about the miniworld are those
represented by whatever tuples currently populate the database.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 32

2.1.3 Relational Model Notation: page 152

 R(A1, A2, ..., An) is a relational schema of degree n denoting that there is a relation R
having as its attributes A1, A2, ..., An.

 By convention, Q, R, and S denote relation names.
 By convention, q, r, and s denote relation states. For example, r(R) denotes one possible

state of relation R. If R is understood from context, this could be written, more simply, as
r.

 By convention, t, u, and v denote tuples.
 The "dot notation" R.A (e.g., STUDENT.Name) is used to qualify an attribute name, usually

for the purpose of distinguishing it from a same-named attribute in a different relation
(e.g., DEPARTMENT.Name).




2.2 Relational Model Constraints and Relational Database Schemas

Constraints on databases can be categorized as follows:

 inherent model-based: Example: no two tuples in a relation can be duplicates (because a

relation is a set of tuples)
 schema-based: can be expressed using DDL; this kind is the focus of this section.
 application-based: are specific to the "business rules" of the miniworld and typically

difficult or impossible to express and enforce within the data model. Hence, it is left to

application programs to enforce.

Elaborating upon schema-based constraints:

2.2.1 Domain Constraints: Each attribute value must be either null (which is really a non-value)
or drawn from the domain of that attribute. Note that some DBMS's allow you to impose the not

null constraint upon an attribute, which is to say that that attribute may not have the (non-)value

null.

2.2.2 Key Constraints: A relation is a set of tuples, and each tuple's "identity" is given by the

values of its attributes. Hence, it makes no sense for two tuples in a relation to be identical (because

then the two tuples are actually one and the same tuple). That is, no two tuples may have the same

combination of values in their attributes.

Usually the miniworld dictates that there be (proper) subsets of attributes for which no two tuples

may have the same combination of values. Such a set of attributes is called a superkey of its
relation. From the fact that no two tuples can be identical, it follows that the set of all attributes of

a relation constitutes a superkey of that relation.

A key is a minimal superkey, i.e., a superkey such that, if we were to remove any of its attributes,
the resulting set of attributes fails to be a superkey.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 33

Example: Suppose that we stipulate that a faculty member is uniquely identified by Name and

Address and also by Name and Department, but by no single one of the three attributes mentioned.
Then { Name, Address, Department } is a (non-minimal) superkey and each of { Name, Address }
and { Name, Department } is a key (i.e., minimal superkey).

Candidate key: any key! (Hence, it is not clear what distinguishes a key from a candidate key.)

Primary key: a key chosen to act as the means by which to identify tuples in a relation.

Typically, one prefers a primary key to be one having as few attributes as possible.

2.2.3 Relational Databases and Relational Database Schemas

A relational database schema is a set of schemas for its relations (see Figure 5.5, page 157)
together with a set of integrity constraints.

A relational database state/instance/snapshot is a set of states of its relations such that no
integrity constraint is violated. (See Figure 5.6, page 159, for a snapshot of COMPANY.)

2.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

Entity Integrity Constraint: In a tuple, none of the values of the attributes forming the relation's
primary key may have the (non-)value null. Or is it that at least one such attribute must have a
non-null value? In my opinion, E&N do not make it clear!

Referential Integrity Constraint: (See Figure 5.7) A foreign key of relation R is a set of its

attributes intended to be used (by each tuple in R) for identifying/referring to a tuple in some

relation S. (R is called the referencing relation and S the referenced relation.) For this to make

sense, the set of attributes of R forming the foreign key should "correspond to" some superkey of
S. Indeed, by definition we require this superkey to be the primary key of S.

This constraint says that, for every tuple in R, the tuple in S to which it refers must actually be in
S. Note that a foreign key may refer to a tuple in the same relation and that a foreign key may be

part of a primary key (indeed, for weak entity types, this will always occur). A foreign key may
have value null (necessarily in all its attributes??), in which case it does not refer to any tuple in

the referenced relation.

Semantic Integrity Constraints: application-specific restrictions that are unlikely to be

expressible in DDL. Examples:

 salary of a supervisee cannot be greater than that of her/his supervisor

 salary of an employee cannot be lowered

2.3 Update Operations and Dealing with Constraint Violations.

For each of the update operations (Insert, Delete, and Update), we consider what kinds of

constraint violations may result from applying it and how we might choose to react.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 34

2.3.1 Insert:

 domain constraint violation: some attribute value is not of correct domain

 entity integrity violation: key of new tuple is null

 key constraint violation: key of new tuple is same as existing one

 referential integrity violation: foreign key of new tuple refers to non-existent tuple

Ways of dealing with it: reject the attempt to insert! Or give user opportunity to try again with
different attribute values.

2.3.2 Delete:

 referential integrity violation: a tuple referring to the deleted one

exists. Three options for dealing with it:


 Reject the deletion
 Attempt to cascade (or propagate) by deleting any referencing tuples (plus those that

reference them, etc., etc.)
 modify the foreign key attribute values in referencing tuples to null or to some valid

value referencing a different tuple

2.3.3 Update:

 Key constraint violation: primary key is changed so as to become same as another tuple's

 referential integrity violation:

o foreign key is changed and new one refers to nonexistent tuple
o primary key is changed and now other tuples that had referred to this one violate

the constraint

2.3.4 Transactions: This concept is relevant in the context where multiple users and/or application

programs are accessing and updating the database concurrently. A transaction is a logical unit of

work that may involve several accesses and/or updates to the database (such as what might be

required to reserve several seats on an airplane flight). The point is that, even though several

transactions might be processed concurrently, the end result must be as though the transactions

were carried out sequentially. (Example of simultaneous withdrawals from same checking

account.)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 35

The Relational Algebra



Operations

to

manipulate relations.



Used

to specify

retrieval requests (queries).

 Query result is in

the form of a relation

2.4 Relational Operations:

SELECT

and PROJECT

operations.

Set operations: These include UNION U, INTERSECTION | |, DIFFERENCE -, CARTESIAN
PRODUCT X.

JOIN operations .

Other relational operations: DIVISION, OUTER JOIN, AGGREGATE FUNCTIONS.

2.4.1 SELECT and PROJECT

SELECT operation (denoted by):



Selects the tuples (rows) from a relation R that satisfy a certain

selection condition c




Form of the operation: c

The condition c is an arbitrary Boolean expression on the attributes

of R



Resulting relation has the same attributes as R

Resulting relation includes each tuple in r(R) whose attribute values

satisfy the condition c

Examples:

DNO=4(EMPLOYEE)

SALARY>30000
(EMPLOYEE)

(DNO=4 AND SALARY>25000) OR DNO=5
(EMPLOYEE)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 36

PROJECT operation (denoted by):

 Keeps only certain

attributes (columns) from a relation R specified in an attribute list L

 Form of

operation: L(R)

 Resulting relation

has only those attributes of R specified in L

 The PROJECT operation eliminates duplicate tuples in the resulting

relation so that it remains a mathematical set (no duplicate elements).

Example: SEX,SALARY(EMPLOYEE)

If several male employees have salary 30000, only a single tuple <M, 30000> is kept in the
resulting relation.

Duplicate tuples are eliminated by the operation.

Sequences of operations: Several operations can be combined to form a relational algebra

expression (query)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 37

Example: Retrieve the names and salaries of employees who work in department 4:

FNAME,LNAME,SALARY (DNO=4(EMPLOYEE))

Alternatively, we specify explicit intermediate relations for each

step:

DEPT4_EMPS DNO=4(EMPLOYEE)

 (DEPT4_EMPS)
FNAME,LNAME,SALARY

Attributes can optionally be renamed in the resulting left-hand-side relation (this may be
required for some operations that will be presented later):

DEPT4_EMPS DNO=4(EMPLOYEE)

 (FIRSTNAME,LASTNAME,SALARY) FNAME,LNAME,SALARY(DEPT4_EMPS)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 38

2.5 Relational algebra operation Set theory Operations

Binary operations from mathematical set theory:

UNION: R1 R2,

INTERSECTION: R1 R2,

SET DIFFERENCE: R1 - R2,

CARTESIAN PRODUCT: R1 X R2.

For , , -, the operand relations R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) must have the same

number of attributes, and the domains of corresponding attributes must be compatible; that is,

dom(Ai) = dom(Bi) for i=1, 2, ..., n. This condition is called union compatibility. The resulting

relation for , , or - has the same attribute names as the first operand relation R1 (by convention).

CARTESIAN PRODUCT

R(A1, A2, ..., Am, B1, B2, ..., Bn) R1(A1, A2, ..., Am) X R2 (B1, B2, ..., Bn)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 39

A tuple t exists in R for each combination of tuples t1 from R1 and

t2 from R2 such that:

t[A1, A2, ..., Am] = t1 and t[B1, B2, ..., Bn] = t2

If R1 has n1 tuples and R2 has n2 tuples, then R will have n1*n2 tuples.

CARTESIAN PRODUCT is a meaningless operation on its own. It can combine related tuples
from two relations if followed by the appropriate SELECT operation.

Example: Combine each DEPARTMENT tuple with the EMPLOYEE tuple of the manager.

DEP_EMP DEPARTMENT X EMPLOYEE

DEPT_MANAGER MGRSSN=SSN(DEP_EMP)

2.6 JOIN Operations

THETA JOIN: Similar to a CARTESIAN PRODUCT followed by a SELECT. The condition c

is called a join condition.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 40

R(A1, A2, ..., Am, B1, B2, ..., Bn) R1(A1, A2, ..., Am) c R2 (B1, B2, ..., Bn)

EQUIJOIN: The join condition c includes one or more equality comparisons involving

attributes from R1 and R2. That is, c is of the form:

(Ai=Bj) AND ... AND (Ah=Bk); 1<i,h<m, 1<j,k<n

In the above EQUIJOIN operation:

Ai, ..., Ah are called the join attributes of R1

Bj, ..., Bk are called the join attributes of R2

Example of using EQUIJOIN:

Retrieve each DEPARTMENT's name and its manager's name:

T DEPARTMENT MGRSSN = SSN EMPLOYEE

RESULT
 DNAME,FNAME,LNAME

(T)

NATURAL JOIN (*):

In an EQUIJOIN R R1 c R2, the join attribute of R2 appear redundantly in the result

relation R. In a NATURAL JOIN, the redundant join attributes of R2 are eliminated from R. The
equality condition is implied and need not be specified.

R R1 *(join attributes of R1),(join attributes of R2) R2

Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT he/she works
for:

T EMPLOYEE *(DNO),(DNUMBER) DEPARTMENT

RESULT
FNAME,LNAME,DNAME

(T)

If the join attributes have the same names in both relations, they need not be specified and we can

write R R1 * R2.

Example: Retrieve each EMPLOYEE's name and the name of his/her SUPERVISOR:

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 41

SUPERVISOR(SUPERSSN,SFN,SLN)

 (EMPLOYEE)
SSN,FNAME,LNAM

T EMPLOYEE * SUPERVISOR

RESULT
FNAME,LNAME,SFN,SLN

(T)

Note: In the original definition of NATURAL JOIN, the join attributes were required to have
the same names in both relations.

There can be a more than one set of join attributes with a different meaning between the same

two relations. For example:

 JOIN ATTRIBUTES

 RELATIONSHIP

EMPLOYEE.SSN= EMPLOYEE manages

 DEPARTMENT.MGRSSN

 the DEPARTMENT

EMPLOYEE.DNO= EMPLOYEE works for

 DEPARTMENT.DNUMBER the DEPARTMENT

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 42

Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT he/she works
for:

T EMPLOYEE DNO=DNUMBER DEPARTMENT

RESULT
 FNAME,LNAME,DNAME

(T)

A relation can have a set of join attributes to join it with itself :

 JOIN ATTRIBUTES RELATIONSHIP

EMPLOYEE(1).SUPERSSN= EMPLOYEE(2) supervises

 EMPLOYEE(2).SSN EMPLOYEE(1)

One can think of this as joining two distinct copies of the relation, although only one relation

actually exists In this case, renaming can be useful.

Example: Retrieve each EMPLOYEE's name and the name of his/her SUPERVISOR:

SUPERVISOR(SSSN,SFN,SLN) SSN,FNAME,LNAME(EMPLOYEE)

T EMPLOYEE SUPERSSN=SSSNSUPERVISOR

RESULT
 FNAME,LNAME,SFN,SLN

(T)

Complete Set of Relational Algebra Operations:

All the operations discussed so far can be described as a sequence of only the operations SELECT,

PROJECT, UNION, SET DIFFERENCE, and CARTESIAN PRODUCT.

Hence, the set { , , , - , X } is called a complete set of relational algebra operations. Any query

language equivalent to these operations is called relationally complete.

For database applications, additional operations are needed that were not part of the original

relational algebra. These include:

1. Aggregate functions and grouping.

2. OUTER JOIN and OUTER UNION.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 43

AGGREGATE FUNCTIONS ()

Functions such as SUM, COUNT, AVERAGE, MIN, MAX are often applied to sets of values or
sets of tuples in database applications

<grouping attributes> <function list>(R)

The grouping attributes are optional

Example 1: Retrieve the average salary of all employees (no grouping needed):

(AVGSAL) AVERAGE SALARY (EMPLOYEE)

Example 2: For each department, retrieve the department number, the number of employees, and
the average salary (in the department):

(DNO,NUMEMPS,AVGSAL) DNO
COUNT SSN, AVERAGE SALARY (EMPLOYEE)

DNO is called the grouping attribute in the above example

OUTER JOIN

In a regular EQUIJOIN or NATURAL JOIN operation, tuples in R1 or R2 that do not have

matching tuples in the other relation do not appear in the result

 Some queries require all tuples in R1 (or R2 or both) to appear in

the result

 When no matching tuples are found, nulls are placed for the

missing attributes

LEFT OUTER JOIN: R1 X R2 lets every tuple in R1 appear in the result

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 44

RIGHT OUTER JOIN: R1 X R2 lets every tuple in R2 appear in the result

FULL OUTER JOIN: R1 X R2 lets every tuple in R1 or R2 appear in the result

2.8 Examples of Queries in Relational Algebra

 Q1: Retrieve the name and address of all employees who work for the ‘Research’ department.




RESEARCH_DEPT DNAME=‘Research‘ (DEPARTMENT)

RESEARCH_EMPS(RESEARCH_DEPT DNUMBER=

DNOEMPLOYEEEMPLOYEE)

RESULT FNAME, LNAME, ADDRESS (RESEARCH_EMPS)


 Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN) ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS (ALL_EMPS - EMPS_WITH_DEPS)

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 45

RESULT LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

3.9 Relational Database Design Using ER-to-Relational Mapping

Step 1: For each regular (strong) entity type E in the ER schema, create a relation R that
includes all the simple attributes of E.

EMPLOYEE
SSN Lname Fname

DEPARTMENT

NUMBER NAME

Step 2: For each weak entity type W in the ER schema with owner entity type E, create a relation
R, and include all simple attributes (or simple components of composite attributes) of W as
attributes. In addition, include as foreign key attributes of R the primary key attribute(s) of the
relation(s) that correspond to the owner entity type(s).

DEPENDENT
EMPL-SSN NAME Relationship

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 46

Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T
that correspond to the entity types participating in R. Choose one of the relations, say S, and include

the primary key of T as a foreign key in S. Include all the simple attributes of R as attributes of S.

DEPARTMENT

MANAGER-SSN StartDate

Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S.

Include the primary key of T as a foreign key of S. Simple attributes of R map to attributes of S.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 47

EMPLOYEE
SupervisorSSN

Step 5: For each binary M:N relationship type R, create a relation S. Include the primary keys
of participant relations as foreign keys in S. Their combination will be the primary key for S.
Simple attributes of R become attributes of S.

WORKS-FOR

EmployeeSSN DeptNumber

Step 6: For each multi-valued attribute A, create a new relation R. This relation will include an
attribute corresponding to A, plus the primary key K of the parent relation (entity type or
relationship type) as a foreign key in R. The primary key of R is the combination of A and K.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 48

DEP-LOCATION

Location DEP-NUMBER

Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent R.
Include the primary keys of the relations participating in R as foreign keys in S. Simple attributes
of R map to attributes of S. The primary key of S is a combination of all the foreign keys that
reference the participants that have cardinality constraint > 1.

For a recursive relationship, we will need a new relation.

DATABASE MANAGEMENT SYSTEM 15CS53

DEPT OF CSE Page 49

Questions

1. Define the following terms with an example for each.

2. Explain:

3. i) Domain constraint ii) Semantic integrity constraint iii) Functional

dependency constraint

4. List the characteristics of relation? Discuss any one?

5. Discuss various types of Inner Join Operations?

6. Discuss the characteristics of a relation, with an example
7. Briefly discuss the different types of update operations on relational database. show an

example of
8. What is valid state and an invalid state,with respect to a database
9. Define referential integrity constraint. Explain the importance of referential integrity

constraint. How is this constraint implemented in SQL
10. Define referential integrity in each of the update operation

